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1 Mathematical Structure of the model

1.1 Model structure

The Bayesian hierarchical model, which we use in our paper for investigating robust-
ness, is based on a latent variable implementation of a biological indicator variable Ig.
Furthermore it is linked with an ANOVA type linear model:

yn,g = xTn,gβg + εn,g, n = 1, . . . , N, g = 1, . . . , G (1.1)

where for any given sample n and gene g:

yn,g is the observed gene expression,

xn,g is a vector of the underlying design matrix;

xn,g = [I(Sn,g = 1), . . . , I(Sn,g = S)]T ∈ RS×1

Sn,g
is an factor variable encoding the biological system of observation
yn,g, known from the experimental design

βg
is the vector of means fitted by the model conditional on the indicator
of (non-)differential expression

Ig
is the biological indicator which differs between differential expression
and no differential expression and thus determines the dimension of βg

εn,g noise residuals

The design matrix (x1,g, . . . , xN,g) =: Xg = X ∈ RS×N is of course independent of the
gene g, as all genes have to appear in all experiments and systems. The actual parameter
of interest in this setting is the biological indicator Ig, it will help to rank genes according
to their posterior probability of being differentially expressed. Mathematically, this
indicator differs between a univariate and a multivariate linear model by determining
the dimension of βg. Biologically it distinguishes between differential expression and
non-differential expression of a gene. A one dimensional parameter can be interpreted
as the estimator of the mean for a gene for which we have equal means of intensities in
all biological systems; this is the definition of ”no differential expression”.

Ig = 0 : βg,0|Ig = 0 ∼ N1(µg,0, (τg,0)−1)
βg = [βg,0, . . . , βg,0]T ∈ RS×1 (1.2)

However a multivariate vector βg contains the different estimates of means for the re-
spective groups; its dimension is naturally equal to the number of different groups. If
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1 Mathematical Structure of the model

the estimate of a group is distinguishable from at least one of the others, the gene g is
called differentially expressed.

Ig = 1 : βg|Ig = 1 ∼ NS(µg, T−1
g )

µg = [µg,1, . . . , µg,S ]T ∈ RS×1

Tg =

 τg,1 0
. . .

0 τg,S

 ∈ RS×S

(1.3)

Every gene has a certain probability of being differentially expressed, thus Ig itself will
a priori be modelled by an alternative distribution with probability p of ’success’, i.e.
differential expression.

Ig|p ∼ Bin(1, p) (1.4)

For the update of the probability p a Beta distribution is chosen as prior for this param-
eter which is the natural conjugate prior.

p ∼ Be(a, b). (1.5)

This choice is justified not only by the easiness of updating, but especially by taking into
account the ’counting’ setting, which means that the total number of ones is the value
of interest as well as a sufficient statistic in this model.

1.2 Student’s t Model

For the ansatz we take the general framework of the model described in section 1.1.
Hereby the approach towards robustification is made using Student’s t-distributions in
the likelihood and prior setting. It is a well known (see [21]) and easily proved fact,
that according to its definition the non-central t-distribution can be replaced by an
hierarchical structure consisting of a Normal- and a Gamma-distribution in the following
way:

X ∼ tν(µ, σ2)⇔
X|ϕ ∼ N(µ, 1

ϕσ
2)

ϕ ∼ Ga(ν2 ,
ν
2 )

(1.6)

According to (1.6) the model is written as

yn,g|βg, ν ∼ tν(xTn,gβg, τε)
−1) ⇔

yn,g|βg, ϕ ∼ N(xTn,gβg, (ϕn,gτε)
−1)

ϕn,g|ν ∼ Ga(ν2 ,
ν
2 )

τε|g, h ∼ Ga(g, h)

(1.7)

The auxiliary parameter ϕn,g can be interpreted as a scaling factor which rescales the
variance of the normal distribution such that outlying values become more probable.
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1 Mathematical Structure of the model

This is the robust behaviour of t distribution which we want to gain for our noise model.

A necessary condition for this model to work is to show that the marginal distribution
of yn,g is indeed a student’s t distribution. Although the interrelation between student’s
t distribution and normal distribution is well-known, it will be proved for reasons of
completeness.

Lemma 1. The marginal distribution m(yn,g|ν) of yn,g is t-distributed with degrees of
freedom ν.

Proof.

p(yn,g, ϕn,g| . . .) =
ν
2

ν
2

Γ(ν2 )︸ ︷︷ ︸
=: c1

(ϕn,g)
ν
2
−1 exp (−ν

2
ϕn,g)

τ0.5

√
2π︸ ︷︷ ︸

=: c2

ϕ0.5
n,g exp (−1

2
τϕn,g(yn,g − xTn,gβg)2)

= c1c2 ϕ
ν+1

2
−1

n,g exp (−ϕn,g
1
2

(ν + τ(yn,g − xTn,gβg)2))︸ ︷︷ ︸
=: I(ϕn,g)

The structure of the expression I(ϕn,g) above is the same as a Gamma-distribution
Ga(a, b) with parameters for shape a = ν+1

2 and rate b = 1
2(ν+ τ(yn,g−xTn,gβg)2) except

for the normalisation constant. Thus the marginal distribution equals

m(yn,g) =
∫ ∞

0
I(ϕn,g)dϕn,g = c1c2

Γ(a)
ba

which after cancelling a few terms results in

Γ(ν+1
2 )

Γ(ν2 )
τ0.5

√
νπ

(1 +
τ

ν
(yn,g − xTn,gβg)2)−

ν+1
2
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Figure 1.1: Directed Acyclic Graph representation of the model rectangular frames refer
to variables which are fixed during the updates (data, fixed hyperparameters), variables
in circles are updated as parts of the model

yn,g observations, i.e. normalised light intensities
Sn,g indicator to which experiment type observation yn,g belongs
βg ANOVA parameter vector for gene g
Ig indicator of differential expression
p probability of a gene to be differentially expressed
λ prior precision of βg
τ precision of the regression model
ϕn,g scaling parameter linking normal and t distribution
ν degrees of freedom of the error model
J multinomial variable containing model probabilities

6



1 Mathematical Structure of the model

An essential component of the model in figure 1.1 is a student’s t noise model of varying
degrees of freedom. This model is set up such as to allow us to consider robustness issues
with respect to outliers in the data yn,g. ν decodes the degrees of freedom of a t distribu-
tion, thus for high enough values the t distributions will be sufficiently similar to normal
distributions that differing between them does not make any sense. Therefore a cut-off
value νmax is specified for determining the value where normality can be assumed, i.e.
reaching the maximum value is equivalent with choosing a normal distribution model.
However this model is not approximated by the tνmax distribution, but an exact nor-
mal distribution model is used. In order to implement such a setting, moving between
parameter spaces of different dimension is required and will be realised by a reversible
jump move within the MCMC algorithm.
In order to gain flexibility with respect to the choice of degrees of freedom for the t-
distribution a discrete uniform hyper prior on the set N over the parameter ν is specified:

ν ∼ UN (1.8)
N := {x ∈ R|2 ≤ x := j · cgrid ≤ νmax, j ∈ N} (1.9)

⇔ P[ν = k|K] = 1/K, k ∈ N; K = |N| (1.10)

The choice of a uniform prior on this finite set also represents our lack of information
regarding the underlying noise model. In order to improve readability the ’size’ with
respect to the counting measure of the set N, K, is used for the specification of the
uniform distribution in figure 1.1.
However the definition of the set N in equation (1.9) offers us great flexibility in the
choice of the underlying parameter space and thus also for the analysis of robust be-
haviour. Choosing a grid size cgrid equal to 1 or even 5 allows us to work with clearly
distinguishable t distributions, whereas refining the grid allows us to approximate a con-
tinuous setting for ν sufficiently well. The importance of using this discrete model lies
in the notion of including the normal model not approximately, but exactly, which will
be realised by a dimension changing move.

The integration of the degrees of freedom parameter into the model makes it possible to
let the model choose itself which error distribution is the most suitable. It allows us to
take such a large number of models into account.
The multinomially distributed auxiliary variable J represents these model probabilities
in a vector. Its update is truly equivalent to updating the model probabilities of all
considered models together. The probability of choosing each model i mi times among
M draws is

P[J = (m1, . . . ,mK)] =
M

m1! . . .mk!
pm1

1 . . . pmKK . (1.11)

According to the above assumptions (Equation 1.8), the prior values of hyperparame-
ters pi equal 1/K for all i. Their updated posterior values are equal to the posterior
probability of each model. The biological indicator for differential expression follows a
Bernoulli distribution

π(Ig|p) = pIg(1− p)1−Ig (1.12)
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1 Mathematical Structure of the model

using a conjugate beta prior for the parameter p, which can be interpreted as probability
of a gene being differentially expressed

π(p) =
Γ(a+ b)
Γ(a)Γ(b)

xa−1(1− x)b−1. (1.13)

Conditional on ”differential expression” respectively ”no differential expression”, the co-
efficient vector is determined by a multidimensional respectively one-dimensional under-
lying distribution as described above in section 1.1.
As a special case of the general settings above several restrictions for the parameters
involved are made. The hyperparameter µ is assumed to be fixed, i.e. µg,s = µ ∀g, s ,
e.g. taking the value of the overall sample mean, whereas the precision of βg shall be
specified by the parameter λ, which is described by one common parameter for all prior
precision parameters and follows a Gamma distribution, i.e.

τg,s := λ ∀g, s (1.14)
λ ∼ Ga(c, d) (1.15)

This reduces the model parts (1.2), (1.3) to:

Ig = 0 βg,0|Ig ∼ N1(µ, (λ)−1)
βg = [βg,0, . . . , βg,0]T ∈ RS×1

Ig = 1 βg|Ig ∼ NS(µ, (λ)−1ES)
(1.16)

The following table gives an overview over the model parameters and their distributions:

yn,g ∼ N(xTn,gβg, (ϕn,gτε)
−1)

βg,0|Ig = 0 ∼ N1(µ, (λ)−1)

βg|Ig = 1 ∼ NS(µ, (λ)−1ES)

λ ∼ Ga(c, d)

τε|g, h ∼ Ga(g, h)

ϕn,g|ν ∼ Ga(
ν

2
,
ν

2
)

ν ∼ UN

Ig|p ∼ Bin(1, p)

p ∼ Be(a, b)

Table 1.1: Overview over Student‘s t model
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1 Mathematical Structure of the model

1.3 Robustness

1.3.1 The Concept of Bayesian Robustness

The aim of Bayesian robustness is to smartly choose priors, likelihood or loss functions
in such a way that they are less sensitive to changes of other model components. The
basic idea of doing this is to define a class of distributions, which may work as priors or
likelihoods, instead of choosing a single type of distribution for that purpose. The selec-
tion of natural conjugate or non informative priors can be seen as an example for cases,
when a single type of distribution is selected with a specific goal in mind. Interpretation
and computational practicality of the conjugate are weighed against compatibility with
transformations of non-informative priors. However a problem even with so-called non
informative priors is that one single distribution cannot sufficiently express indifference
about the parameter. A good statement in that respect has been made by Walley [39]:

The problem is not that Bayesians have yet to discover the truly non informa-
tive priors, but rather that no precise probability distribution can adequately
represent ignorance.

A robustification of the situation might be to define a class which includes both the
natural conjugate and non-informative and other types of prior distributions to cover a
larger range of possible model behaviour.
There are two main problems that occur, when working with exponential family distri-
butions (see [3]):

� exponential family distributions are very sensitive against outliers.

� conjugate priors have great influence in cases when the data jars with the prior
information implicitly introduced by its specification, i.e. the informative choice of
hyperparameters is even more influential if the data itself is not fully compatible
with the parametric model structure.

1.3.2 Global Robustness

Because the concept of global robustness of priors will play a certain role in the focus
of our work, the basic ideas of this theory will be presented here. The principal idea is
to define a class of prior distributions Γ in such a way that it contains all ”reasonable”
distributions. The range of results, determined from all models with priors in this class,
serves as an indicator whether the model is sufficiently robust: If the range r(Γ) is not
”too large” the results are considered as robust. (see [3]) The concept is rather vaguely
defined and leaves it to the statistician to decide on the thresholds for ”too large” as well
as the quantity of interest.

r(Γ) = ‖ψ − ψ‖,
ψ = supπ∈Γ ψ(π, f), ψ = infπ∈Γ ψ(π, f),

(1.17)
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1 Mathematical Structure of the model

where π represents the prior, f the likelihood function and ψ(π, f) a point estimate from
the posterior or another quantity of interest.
As the monotony criterion

Γ′ ⊆ Γ⇒ (ψ′ − ψ′) ≤ (ψ − ψ) (1.18)

holds, the range of results can be reduced by imposing reasonable restrictions on the
class Γ and hereby gaining a subset Γ′, which has a smaller range of results.

1.3.3 Likelihood robustness

In the majority of cases Bayesian robustness consideration focus on the robustification
of prior distributions. There are 2 main reasons for this, firstly since the early days of
Bayesian analysis the priors as subjective part of the method have been viewed as the
weakest link of the theory. Thus they were in the focus of most criticism. Yet logically
the likelihood function has considerable influence, as it determines the way how the
data will influence the results. However, there is no easy way of quantifying the actual
influence. This leads us to the second reason why too many considerations of likelihood
robustness have been avoided: investigation of the posterior robustness with respect to
the likelihood is not an easy task.
Shyamalkumar ([32]) has proposed a method to investigate this, which works analogously
to global robustness of priors (Berger’s original concept is defined for priors and likelihood
functions alike). Again a class of distributions Γf , from which the model likelihoods shall
be chosen, is defined and the range of results shall give indication of how robust the model
is (see equation (1.17) ).

ψ = sup
f∈Γf

ψ(π, f), ψ = inf
f∈Γf

ψ(π, f), (1.19)

Another way of investigating likelihood robustness is to choose the likelihood function
from a finite class of models M = {M1, . . . ,MI}, which might be determined e.g. by
distributions with different tail behaviour or skewness. Among these one looks for the
’optimal’ model to determine the most robust behaviour.
The advantage of this method is that unlike the determination of global infima and
suprema the complexity of calculation does not increase significantly with the increase
of sample size. Its obvious disadvantage is that only an approximation of uncertainty
can be achieved, since a finite class lacks the adaptive nature of a more generally defined
(infinite) class.

Although we could choose from a broad class of symmetric, unimodal distributions for
robustification attempts, the class of possible likelihoods is limited to (non-central) t dis-
tributions with degrees of freedom varying in a predefined set and normal distributions,
in order to have models which are analytically tractable. This approach of robustifica-
tion mainly focusses on outliers of the observations. The hierarchical structure of the
proposed model makes sure a certain robustness with respect to the specification of pri-
ors is obtained.

10



1 Mathematical Structure of the model

An analysis of robustness with respect to the range of the posterior distribution or cer-
tain parameter estimates is virtually impossible since these quantities of interests are
determined by Markov chain Monte Carlo simulation. Thus more than one run per
model has to be performed in order to reduce variation introduced by the simulation
method itself and these combined results present the estimate of the expected value of
model parameters. However performing all these simulations for all models provided by
Γ is neither computationally manageable nor of real practical interest. Thus Shyamalku-
mar’s idea of finite classes is adapted in a way that the hierarchical model itself chooses
the ’optimal’ model given the data and all other modelling components.
The goal of this paper is to focus on the robustness of the likelihood function of a
regression model in the framework of microarray analysis. The need for such consider-
ations arises because microarrays often produce widely dispersed data. The commonly
used models for determining gene expression are based on Gaussian distribution settings
which provide analytically tractable results (e.g. see [19]). For example Baldi et al. [2]
use t-tests with appropriate adjustments for the number of tests performed. Others have
introduced fully Bayesian models based on normal distribution assumptions, as Ibrahim
et al. [16], Zhao et al. [42] and Gottardo et al. [12]. All these approaches have in com-
mon that the high probability of ’extreme’ values frequently appearing in microarray
data is not suitably represented by the normal distribution model.
A statistical technique for determining the differential expression of genes, estimating
and controlling error rates by the means of a non-parametric statistic has been intro-
duced by Tusher et al. (see [37]). Using non-parametric methods replaces the restrictive
assumptions linked with the normal distribution setting with very general ones at the
cost of losing power of tests. Such a method is robust in the sense of independence of as-
sumptions of underlying parametric distributions, but it is not the kind of robustness we
are aiming for. We want to stay close the parametric model of normal distributions, but
take into account data which deviates from the Gaussian distributions setting, e.g. far
outlying data points. However, as we work with a linear regression model, we still want
a symmetric unimodal, ideally parametric distribution as error distribution which is far
more specific than the assumptions of non-parametric methods. Attempts for such mod-
els have been made, mainly focussing on Gaussian mixture distributions ([23]), rarely
on t distributions ([13]). In some ways our modelling attempt is similar to Gottardo et
al.’s ([13]), yet in other aspects ours is more general. In contrast to the approach by
Gottardo, we do not aim to compare the student’s t approach against other methods
of the types described above, but aim for directly comparing it to the same model in
standard setting, i.e. Gaussian error distribution.

1.3.4 Robustness as we see it

Different components of a probabilistic model can be aims for robustness considerations.
Our main focus however is the robustification of the likelihood function of a hierarchical
ANOVA model. The standard distribution setting for such a model would be a Gaussian
error distribution (see [16], hierarchical model [42]; Bayesian ANOVA for microarrays
[19]). Using Student’s t distributions in order to gain robustness compared to a Gaussian
distribution based model has been proposed several times, among others by Berger ([3]).
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1 Mathematical Structure of the model

In the context of microarrays it has been used by [13]. The fact that the student’s t
distribution has higher probability on its tails makes it a reasonable candidate for models
wishing to take outlying values into account. At the same time it shares certain prop-
erties with the normal distribution, like symmetry and unimodality. These properties
are important for residuals of a regression model. Thus the student’s t distribution is
applicable for modelling values which behave like Gaussian values except for a higher
probability of outlying observations. Since we are working in the framework of ANOVA
it is only necessary to take care of outliers in the observations yn,g. This is also a good
reason why this approach focuses mainly on robustification of the likelihood function,
which is linked to the behaviour of the observations.
To show the ansatz of the robustification in the framework of Bayesian Robustness stud-
ies as performed by Jim Berger, for the purpose of robustification of the likelihood a
class Γ of student’s t distribution and normal distributions is defined in the following
way:

Γ = {{tν(µ, τ−1), ν ∈ N \ {νmax}}, N(µ, τ−1)} (1.20)

The definition of the set N in (1.9) makes this approach very flexible. Choosing only
a few values for ν allows us to make clear decisions of the tendency towards normality
respectively t distribution which is the general behaviour of interest for us. A finer
grid then makes it possible to have an ’almost’ smooth representation of the limited
parameter space for the degrees of freedom. This discretisation is of special importance
for the possibility to take a normal model into account instead of an approximation
which would of course be more similar to the nearest t-distributions than to the normal
distribution it is supposed to approximate. Thus an upper bound for ν is important in
order to make a clear decision when the distribution is sufficiently similar to a normal
distribution to no longer have need of robustification w.r.t outliers. ’Jumping’ to a normal
distribution model, when this bound is reached, allows us to accurately represent the
importance of using the standard approach in cases where robustification is found to be
unnecessary.
The structure of the presented model, mainly the variable dimensions of βg|Ig, makes
finding an analytical solution virtually impossible, thus the usage of sampling methods
will be essential. As the model will be treated using a MCMC algorithm, finding the right
balance between reasonable and required robustification and computational practicality
is important. Robustness cannot be studied in the way it has been presented for global
robustness, as the variation due to the sampling algorithm will be greater than the
variation between the parameters (e.g. βg) for different model settings (e.g. fixed degrees
of freedom for 1 student’s t model). It will rather be the purpose of the model to indicate,
whether there exists a problem in principle with the assumption of normally distributed
data, on which further analysis steps would be based. The variable degrees of freedom
parameter ν is supposed to give an answer to that question.
As mentioned above, our model is in some ways comparable to the approach by [13].
However our goals differ, as we aim to compare the model to its normal distribution
analogue, in order to answer the questions, if a student’s t model is required at all and
how ”far away” from a normal distribution in terms of degrees of freedom we truly are.
Additionally we have defined the set of t distributions to include in a more general
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1 Mathematical Structure of the model

and flexible way. Firstly we can differ between t distributions with clearly different
degrees of freedom values which is useful in principle, but might be problematic in other
respects. Secondly we can reduce the step size far enough such that ν can be viewed
as discretisation of a continuous degrees of freedom parameter, while at the same time
we keep the advantages of the discrete setting described above. Using test data sets
we will show the advantage of using a smaller step size in addition to the larger one.
Additionally the variable dimension of βg|Ig makes a big difference between their ansatz
and our model.
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2 MCMC schemes

2.1 Markov Chain Monte Carlo Methods

As its name is telling already MCMC methods are based on 2 concepts of mathematics
respectively computational integration:

1. Markov Chains

2. Monte Carlo integration

MCMC uses the approximation of expectations by means of random draws from a given
distribution in combination with Markov chains which under certain conditions behave
like draws from a single stationary distribution.

2.1.1 Monte Carlo integration

The generic problem for classical Monte Carlo integration is the calculation of the fol-
lowing term:

Ef [h(X)] =
∫
X
h(x)f(x)dx (2.1)

Given the observations (X1, . . . , Xn) which have been generated from the density f(.)
the expression (2.1) can be approximated by the empirical average

hn =
1
n

n∑
i=1

h(xi) (2.2)

Due to the Strong Law of Large Numbers hn converges almost surely to Ef [h(X)].
Especially under the condition that h2 has finite expectation under f, the speed of con-
vergence can actually be assessed, which will be of importance for the construction of
convergence tests for the method. This follows as the variance of hn is

V(hn) =
1
n

∫
X

(h(x)− Ef [h(X)])2f(x)dx

and its empirical estimator

vn =
1
n2

n∑
i=1

(h(xi)− hn)2.

Thus the term
hn − Ef [h(X)]

√
vn

∼̇ N(0, 1)
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2 MCMC schemes

2.1.2 Overview over used MCMC methods

This methodology is based on 2 principles. Firstly, it approximates expectations by
averages of random draws from a given distribution (Monte Carlo). Secondly, it uses
Markov chains which behave under certain conditions like draws from a single station-
ary distribution (see [31, 11] and [4]). With the MCMC algorithm we can estimate the
means of our model parameters w. r. t. the posterior distribution.
As different variable settings require certain ways of sampling, the resulting hybrid sam-
pler consists of Metropolis Hastings (MH), Gibbs and Reversible Jump (RJ) steps. Gibbs
steps are the most easy to determine and implement. The principal idea of the Gibbs
update is to draw each variable from the full conditional distribution given all other
variables.For all variables with conjugate priors a direct update is possible, because we
can explicitly determine the full conditional distribution of this model parameter given
all others. In scenarios, where the Gibbs update is feasible, it is very effective, as every
draw is automatically accepted.
The Gibbs scheme however cannot be applied to variables that do not have conjugate
priors. For those parameters a more general updating method is used: the MH update.
During a Metropolis Hastings step a new value for the parameter ϑnew is proposed, i.e.
it is drawn from a proposal distribution given the old parameter value q(.|ϑold). For this
proposed value an acceptance probability α(ϑold, ϑnew) is calculated, which compares
the new to the old value in the following way:

α(ϑold, ϑnew) = min
{
ξ(ϑnew| . . .)
ξ(ϑold| . . .)

q(ϑold|ϑnew, . . .)
q(ϑnew|ϑold, . . .)

, 1
}
. (2.3)

With this probability α(ϑold, ϑnew) the new value is accepted. The dependence on all
other variables which stay unchanged during this step, is expressed by ”. . .”. As we use
the Metropolis-Hastings update just for a part of the parameters (summarised by ϑ) at
once, the target distribution ξ(θ| . . .) is the marginal distribution of the possibly multi-
variate parameter θ given all other parameters (. . .). According to [4] this is a proper
way of expressing a MH update in an hybrid sampler, because the other variables do not
contribute to the dimensionality of the problem, as they remain fixed during the step.
[4] have discussed the proper way of expressing MH steps for hybrid samplers.
We use MH steps for changing between student’s t noise models with different degrees
of freedom ν. A generalisation of the MH step for models of different dimension is the
RJ step which has been introduced by [14] in order to move between spaces of differ-
ent dimensions. With this special update the algorithm firstly can switch between the
univariate space of βg and the multivariate one, if the gene expression indicator changes
between 2 steps. Our ansatz of the ANOVA model uses the RJMCMC methodology,
whereas [13] have used an approach which is equivalent to the RJ move but can use
a Gibbs step. Secondly, we can change between the highest degrees of freedom stu-
dent’s t distribution and the Gaussian distribution model of smaller dimension with a
RJ update. In our cases there is only one move possible at each time. Therefore, the
acceptance probability for such a move looks like α(ϑold, ϑnew) in equation (2.3) with an
additional factor. This factor results from the Jacobian of a bijection between equally
dimensional parameter spaces which the originals ones are embedded in.
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2.2 Application to the Student’s t distribution model

Due to the choice of conjugate distributions many parameters can be updated by draw-
ing from closed form distributions, which is the usual way for Gibbs sampling algorithm
modules. In 2 cases a different approach will be chosen. Firstly the degrees of freedom
parameter ν will be updated by a Metropolis-Hastings updating step, which in he spe-
cial case of νmax results even in a reversible jump step (see below 2.2.2). Secondly the
coefficients β of the linear regression respectively ANOVA model and the indicator Ig
are updated by Gibbs steps alternating with a reversible jump steps.
For the calculation of the full conditional conditional distributions the common distri-
bution of all modelled stochastic variables has to be derived:

p((Ig)g=1,...,G, p, (βg)g=1,...,G, ν, (ϕn,g)n1,...,N ;g=1,...,G, τε) ∝ (2.4)

∝ p(p|a, b)p(τε|g, h)p(J |K)p(λ|c, d)∏
g p(Ig|p)p(βg|Ig, µg, τg)∏
n p(ϕn,g|ν)p(yn,g − xTn,gβg|ϕn,g, Ig, τε)

(2.5)

Changing dimensions of parameters and non-conjugate priors make the model complex
and require a combination of Metropolis Hastings (MH), Gibbs (G) and Reversible Jump
(RJ) steps. Algorithm 1 presents the structure of these steps using pseudo-code.

Algorithm 1 Hybrid MCMC Sampler
random initialisation of parameters
for n = 1 to burnin do
cgrid = 1
update parameters={

update ν, J and ϕn,g jointly
update p
update λ
update βg and Ig jointly
update τ }

end for
for n = 1 to burnin+ simulationlength do
cgrid = 0.05
update parameters (see first burn-in)

end for
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2.2.1 Initialisation & Choice of parameters

All parameters updated by the algorithm are initialised by random draw from their
according prior distributions given the choice of parameters for the hyperpriors. The
hyperparameters are chosen in line by keeping the underlying interpretation in mind
(e.g. as prior counts etc.) and such as to avoid biasing inference.

� Beta distribution
The hyperparameters of the conjugate Beta prior have a straight forward inter-
pretation as number of genes, which have been observed to be (not) differentially
expressed in a past experiment. A non informative choice would be a = b = 1 or
equally the choice of parameters of the Jeffreys prior in such a case a = b = 1

2 , which
also puts equal weight on both outcomes and has been chosen for the algorithm.

� Gamma distribution
Again an uninformative prior for the scale parameter λ has to be found. For a
precision parameter the Jeffreys prior and maximum entropy prior lead to equal
results:

π(λ) ∝ 1
λ

This type of prior in a normal - conjugate gamma setting can be seen as a special
type of gamma distribution, Ga(0,0). As is the case for many non informative priors
it is improper. This does not have to be a serious obstacle for using it, as long
as the resulting posterior is not improper and we do not run into difficulties with
model selection (see the respective comments in the paper). For the parameters
λ, τε, which have a gamma prior, it will be shown that almost surely the posterior
will be proper. For the details of the structure of posterior parameters see below.
Lemma 1 (Proper posterior).

Given the non informative prior for the parameters θ = λ, τε

θ ∼ Ga(0, 0) ⇔ π(θ) ∝ 1
θ

the posterior will almost surely be proper in the given setting.

Proof. – Case c=d=0: c∗ > 0⇔ G > 0 ∨ i1 > 0
As for any test the number of genes has to be positive, this condition is
automatically fulfilled.

d∗ > 0⇔
ϕ > 0

∃g : βg − µ 6= 0
As ϕ is drawn from a gamma distribution, it will be positive. The set {βg =
µ ∀g} is a null set, i.e. P[βg − µ = 0 ∀g] = 0, hence the condition is
fulfilled almost surely.

– Case g=h=0: g∗ > 0⇔ N > 0 ∧G > 0
As for any test the number of total experiments and the genes should be
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positive in order to make any sense, this condition is automatically fulfilled.

h∗ > 0⇔
ϕ > 0

∃(n, g) : yn,g − xTn,gβg 6= 0
In analogy to above the second condition is fulfilled almost surely, as for any
experiment with expression values yn,g the set {yn,g = xTn,gβg ∀n, g} is a
null set, i.e. P[yn,g − xTn,gβg = 0 ∀n, g] = 0.

� Uniform distribution
The parameter ν is defined on a finite discrete parameter space, the set N. Choos-
ing a uniform prior distribution is not only a legitimate choice of a proper non-
informative prior, it also has the advantage of simplify the expression of the ac-
ceptance probability of the respective Metropolis-Hastings step.
The choice of set N and its maximum value νmax is influenced not only by math-
ematical reasoning but also by computational practicability. As the acceptance
probability of the Metropolis-Hastings update for ν would reach unreasonably high
or low values for the huge, ’real’ data sets, refining the grid used was a practical
option for making jumps to nearby values more likely and thus help with the mix-
ing of the chain. The choice of the value of νmax was somewhat tricky, as test-runs
with varying this value between values of {30, 45, 55, 65, 75, 100, 150} have shown
that on the one hand the ’rule of thumb’ value for approximation by normal distri-
bution, 30, has proven to be too small to allow for differing between t-model data
of higher degrees of freedom (10-15) and normal data, whereas on the other hand
high values like 75, 100, 150 let the parameter find a local mode between 45 and
65 instead of clearly pointing towards νmax, even for normally distributed data.
Thus a moderate value of 65 for higher values of cgrid (e.g. 1) and 45 for finer grids
was chosen as νmax, which has proven to be adequate with the test data and also
performed well with the ’real’ data sets.
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2.2.2 Update ν

The uniform prior can adapt more flexibly to changes in the grid size of the underlying
set. The algorithm allows the degrees of freedom to jump to the next higher or lower
value within the ordered set N, instead of allowing jumps to any valid parameter value
of the set; this is a simple Metropolis-Hastings step.

As an additional feature the commonly used Gaussian model was taken into account as
well. For this purpose a reversible jump step will be introduced, which jumps between
the t-model, consisting of a normal-gamma-model and the auxiliary variables ϕn,g, and
a Gaussian model, which is equal to the upper model, when the auxiliary variables all
equal one.

Acceptance probability

A =

∏
n,g p(yn,g − xTn,gβg|ϕ

(n)
n,g, Ig, τε)∏

n,g p(yn,g − xTn,gβg|ϕ
(o)
n,g, Ig, τε)∏

n,g p(ϕ
(n)
n,g|ν(n))∏

n,g p(ϕ
(o)
n,g|ν(o))

p(ν(o)|ν(n))
∏
n,g p(ϕ

(o)
n,g|ν(o), . . .)

p(ν(n)|ν(o))
∏
n,g p(ϕ

(n)
n,g|ν(n), . . .)

=
∏
n,g

m(o)(ν(o))
m(n)(ν(n))

· p(ν
(o)|ν(n))

p(ν(n)|ν(o))

where the second line results because of the conjugate prior setting for ϕn,g. the
probability of selecting the new value ν(n) given the old value ν(o) is

p(ν(n)|ν(o)) =
{

1 ν(o) = 1 ∨ ν(o) = νmax
0.5 else

thus resulting in the following expression (g∗, h∗ see 2.2.2)

A =

(
p(ν(o)|ν(n))
p(ν(n)|ν(o))

)
·

 ν(n)

2

ν(n)

2

ν(o)

2

ν(o)

2


NG

·

(
Γ(ν

(o)

2 )Γ(g∗(n))

Γ(ν(n)

2 )Γ(g∗(o))

)NG
·
∏
n,g

(h∗n,g
(o))g

∗(o)

(h∗n,g
(n))g∗(n)
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In the special case of the reversible jump step from t distribution to normal distri-
bution the similar formula applies, the determinant of the additionally appearing
Jacobian equals 1.

� For νmax − cgrid → νmax:

A =
∏
n,g

(h∗n,g
(o))g

∗(o) Γ(ν
(o)

2 )

(ν(o)

2

ν(o)

2 )NGΓ(g∗(o))

� For νmax → νmax − cgrid:

∏
n,g

(h∗n,g
(n))−g

∗(n) Γ(g∗(n))(ν
(n)

2

ν(n)

2 )NG

Γ(ν(n)

2 )

Update ϕn,g

The auxiliary variable ϕn,g is drawn from the following Gamma distribution:

ϕn,g| . . . ∼ Ga(g∗, h∗)

g∗ =
ν + 1

2

h∗n,g =
1
2

(ν + τε(yn,g − xTn,gβg)2)

2.2.3 Update τε

The error model is updated in the following way:

τε| . . . ∼ Ga(g +
NG

2
, h+

1
2

∑
n,g

ϕn,g(yn,g − xTn,gβg)2)
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2.2.4 Update βg and Ig

An updating move for the parameter p is made by drawing p from the updated Beta
distribution

p|I ∼ Be(a+ i1, b+ (G− i1))

where I is the vector of all Ig and i1 = |{g : Ig = 1}|, i.e. the number of genes, which
are differentially expressed.

The hyperparameter λ will be updated in the following way:

λ ∼ Ga(c∗, d∗)

c∗ = c+
G− i1 + i1 ∗ S

2

d∗ = d+
1
2

[
∑
g;Ig=0

(βg,0 − µ)2 +
∑
g;Ig=1

(βg − µ)T (βg − µ)]

(WD) update βg conditional on all other variables

case Ig = 0

βg,0|ϕ, . . . ∼ N1(µ∗, (λ∗)−1)

µ∗ =
τε
∑N

n=1 ϕn,gyn,g + λµ

λ∗

λ∗ = (τε
N∑
n=1

ϕn,g + λ)

case Ig = 1

βg|ϕ, . . . ∼ NS(µ∗, (Λ∗)−1)
µ∗ = (Λ∗)−1(λµ+ τεXDϕ,gY

T
g )

Λ∗ = λIS + τεXDϕ,gX
T = diag(λ∗1, . . . , λ

∗
S)

with λ∗s = (τε
N∑
i=1

ϕ(s)
n,g + λ)
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(RJ) case Ig = 0→ Ig = 1: proposal for βg

βg|ϕ, . . . ∼ NS(µ∗, (Λ∗)−1)
µ∗ = (Λ∗)−1(λµ+ τεXDϕ,gY

T
g )

L∗ = diag(λ∗1, . . . , λ
∗
S);λ∗s = (τε

N∑
i=1

ϕ(s)
n,g + λ)

The auxiliary variable

A =

∏
n p(yn,g − xTn,gβg|Ig = 1, . . .)∏
n p(yn,g − βg,0|Ig = 0, . . .)

p(βg|µg, Tg, Ig = 1)p(Ig = 1)
p(βg,0|µg,0, τg,0, Ig = 0)p(Ig = 0)

p(βg,0|Ig = 0, . . .)p(Ig = 0)
p(βg|Ig = 1, . . .)p(Ig = 1)

= λ
S−1

2

√
λ∗∏
s λ
∗
s

p

1− p

e
−1

2
ϕ[(S − 1) ∗ λµ2 − (µ∗)TΛ∗µ∗ + λ∗(µ∗)2]

leads us to an acceptance probability of α=min{1,A}

case Ig = 0→ Ig = 1: proposal for βg,0

βg,0|ϕ, . . . ∼ N1(µ∗, (ϕλ∗)−1)

µ∗ =
τε
∑N

n=1 ϕn,gyn,g + λµ

λ∗

λ∗ = (τε
N∑
n=1

ϕn,g + λ)

The acceptance probability is α=min{1,A−1}.

22
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3.1 Inferring the noise on Artificial Data Sets

An important feature of the proposed algorithm which we tested for all synthetic data
sets is to determine the underlying error distribution correctly, independently of the
data’s variance. Figure 3.1 summarises the distributions of the samples of ν as box
plots. The sampler draws around the true value, while the variation, estimated by the
interquartile range, is less than 2 degrees of freedom. In case of true Gaussian data the
MCMC sampler stays with the Gaussian model without ever leaving it again. As the
Gaussian fits the data very well, a move to the more complex 44 degrees of freedom
t-distribution model is very unlikely. As the model identifies all error distributions
correctly we may conclude that the proposed algorithm is well suited for identifying the
required robustness level in real microarray data.

(i) t4 data

run

7

8

9

10

11

12

1 2 3

●

●

●

(ii) t10 data (iii) Gaussian data

Figure 3.1: The box plots represent the posterior distribution of the estimated degrees
of freedom parameter for a t4, a t10 and a Gaussian data set. The strong dashed line
marks the true degrees of freedom value and the dash-dotted line marks the posterior
mean of all three data sets per setting, i. e. 4.21, 10.66, 45 ∼ ∞

The simulations on artificial data also revealed that adjusting the grid size cgrid during
runtime improves mixing and thus the convergence properties of the Markov chain.
During the burn-in phase the grid size is refined from an initial value in the range of
1 to 5, as proposed in [13], to a smaller value of about 0.05 which stays fixed during
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the following sampling process, see Algorithm 1. A relatively large grid size of about
1 allows the algorithm to quickly determine the approximately correct error model.
Reducing the grid size after the first half of burn-in to cgrid ≈ 0.05 improves mixing
of the Markov chain without limiting the possibility of the algorithm to reach distant
degrees of freedom. Defining the set ν flexibly allows us to infer the degrees of freedom ν
via a discrete random variable J , as well as to approximate the continuous true degrees
of freedom with high accuracy. Additionally, the MCMC sampler with the reduced grid
size requires less updates to reliably infer the degrees of freedom.

3.1.1 Sensitivity Analysis

This section provides further results regarding the models sensitivity to variations of
hyper parameters. Following the arguments in the paper, we focus on an investigation
of the hyper-parameters c and d which specify the hierarchical prior over ANOVA pa-
rameters βg (cf. Figure 1.1). Sensitivity to variations of c and d is induced, if their effect
in the marginal posterior p(λ|c, d,X, Y ) can not be neglected. This is the case if c and d
are large in relation to the evidence contributed from the observations X = {xn|∀n} and
Y = {yn|∀n}. Figures 3.2 and 3.3 illustrate the results of these sensitivity analyses for
Gaussian and Student-t distributed noise models (the degrees of freedom of the Student-t
distribution were fixed to 4). We include the Gaussian case to illustrate that a potential
sensitivity of the model to hyper parameter settings is not caused by our choice of a
more involved noise model. The two subplots (i) shown in both figures are simulations
with a prior expectation of λ, E[λ]p(λ|c,d) = c

d being 0.001. Large (c, d) values lead in this
case to using a zero mean Gaussian prior over ANOVA parameters βg with a variance
of 1000. This has the consequence that differentially expressed genes are hard to detect.
The two subplots (ii) shown in both figures are simulations with a prior expectation of
λ, E[λ]p(λ|c,d) = c

d being 100. Large (c, d) values lead in this case to using a zero mean
Gaussian prior over ANOVA parameters βg with a variance of 0.01. This has ultimately
the (meaningless) consequence that all genes are assessed as differentially expressed.

The additional sensitivity analyses provided here corroborate thus the results in the
main paper that a hierarchical specification of the prior over ANOVA coefficients, βg,
with a Jeffreys prior p(λ|c, d) is essential for warranting that the posterior probabilities
P (Ig|X,Y, a, b, c, d, e, h,K) are data driven and insensitive to local perturbations of the
hyper-parameters c and d.

3.2 Biological Data Sets

To highlight the importance of choosing valid noise models for microarray analysis we
applied the proposed inference scheme to fourteen microarray data sets, summarised
in Table 3.1. We inferred differentially expressed genes for every data set from the
Gaussian and the estimated optimal Student-t model to obtain a quantitative statement.
This approach resulted in two lists of differentially expressed genes with the intersect
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Figure 3.2: Gaussian noise model based sensitivity analysis with different (c, d) param-
eter settings. Both subplots illustrate the dependency of the ordered posterior prob-
abilities for differential expression P (Ig|X,Y, a, b, c, d, e, h,K) on hyper parameter set-
tings. Inference was based on the synthetic experiment which is described in the pa-
per. Subplot (i) uses a parametrisation of (c, d) such that the prior expectation of λ,
E[λ]p(λ|c,d) = c

d equals 0.001. Subplot (ii) sets (c, d) such that the prior expectation
of λ, E[λ]p(λ|c,d) = c

d equals 100. By reducing the prior variance V [λ]p(λ|c,d) = c
d2 , the

hyper parameters get in both situations increasingly informative and start affecting the
P (Ig|X,Y, a, b, c, d, e, h,K) values. Informative (c, d) combinations lead in subplot (i) to
smaller posterior probabilities for differential expression, whereas subplot (ii) shows for
informative (c, d) combinations larger posterior probabilities of differential expression.
This behaviour is in line with theoretical expectations and demonstrates that the hier-
archical prior together with uninformative choices for (c, d) is essential for getting data
driven results.
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Figure 3.3: A sensitivity analysis with different (c, d) parameter settings lead for the
Student-t noise model to the same effect that was observed in Figure 3.2 when us-
ing Gaussian noise. Both subplots illustrate the dependency of the ordered posterior
probabilities for differential expression P (Ig|X,Y, a, b, c, d, e, h,K) on hyper parameter
settings. Inference was based on the synthetic experiment which is described in the
paper. Subplot (i) uses a parametrisation of (c, d) such that the prior expectation of
λ, E[λ]p(λ|c,d) = c

d equals 0.001. Subplot (ii) sets (c, d) such that the prior expectation
of λ, E[λ]p(λ|c,d) = c

d equals 100. By reducing the prior variance V [λ]p(λ|c,d) = c
d2 , the

hyper parameters get in both situations increasingly informative and start affecting the
P (Ig|X,Y, a, b, c, d, e, h,K) values. Informative (c, d) combinations lead in subplot (i) to
smaller posterior probabilities for differential expression, whereas subplot (ii) shows for
informative (c, d) combinations larger posterior probabilities of differential expression.
This behaviour is in line with theoretical expectations and demonstrates that the hier-
archical prior together with uninformative choices for (c, d) is essential for getting data
driven results.
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representing agreement and the symmetric difference representing different biological
interpretations induced by an inappropriate noise model.

Table 3.2 contains the findings for the alternative normalisations and non-parametric
methods. The arresting result of our evaluation is that a heavy-tailed Student-t noise
model is a better fit than a Gaussian noise model for every considered data set indepen-
dently of the normalisation. For most data sets a t-distribution with degrees of freedom
between 1 and 5 got the highest posterior probability. This indicates the need for robust
noise models which can handle outlying data points well and allows us to conclude that
Gaussian noise models are unsuitable for microarray analysis, even if according to [29]
only about 5 to 15 percent of samples are non-normally distributed.

The robust model is generally less sensitive to outlying values, as they appear to be
closer to the bulk of the data. Models with t-distributed noise will therefore assign
lower posterior probabilities of differential expression, if the classification is drawn by
one or a few outlying values. In general outlying observations increase variance. Where
outliers additionally lead to a decreased difference between average expression values,
the Gaussian noise model will overlook differentially expressed genes which would be
captured by heavier-tailed noise model. We therefore expect that a wrongly chosen noise
model will lead to false positives and false negatives. This expectation is confirmed by
the graphs in Figure 3.4 which illustrate such noise model dependencies of the posterior
probabilities of differential expression for two of the datasets. This statement holds true
independently of the applied normalisation method, as we can see from Figures 3.4, 3.5
and 3.6. Figure 3.4 shows the graphs for vsn normalised data, Figure 3.5 for the loess
normalised data and 3.6 the quantile normalised data, respectively.

Each graph in Figure 3.4 is ranked w.r.t. the posterior probabilities obtained by setting
the noise distribution either to a Gaussian density or the most probable t-distribution.
The corresponding probabilities are shown as a decreasing curve. The probabilities
which result from the other noise model are shown as grey dots. In these data sets
we find both false positives and false negatives. On one hand several of the genes
that have been considered highly differentially expressed by the Gaussian model have a
much lower posterior probability in the robust model. On the other hand single genes or
whole ’clusters’ of genes which have low posterior probability for the Gaussian model are
actually highly differentially expressed in the Student-t model. The human melanoma
(GDS1375) data set, as seen in Figure 3.4 (b), is a good example for the appearance of
a large cluster of such genes at the top right. Since the model inference over degrees
of freedom ν clearly favours the robust Student-t model we can consider these genes as
those which would have been overlooked in a normal distribution based model. Table 3.1
shows that the number of genes which show a noise model dependency in the assessment
about differential expression range from 119 to 3561. This is about one tenth to two times
the number of genes which are independently of the noise model assessed as differentially
expressed. We can thus conclude that the choice of noise model can be very influential
on inferred gene lists.
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Figure 3.4: Noise model dependent difference in posterior probability of differential
expression. The graph in subplot (i) is ranked by the posterior probability of differen-
tial expression obtained with the most probable t-distributed noise model (probabilities
shown as black line). The corresponding posterior probabilities obtained by using a
Gaussian noise model are shown as grey dots. The graph in subplot (ii) is ranked by
the posterior probability of differential expression obtained with a Gaussian noise model
(probabilities shown as black line). The corresponding posterior probabilities obtained
when using the most probable t-distributed noise model are shown as grey dots.
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Org. GEO ID Reference Prep. N ν comm. diff. comm. diff.
genes GO terms

A. thal. GDS3216 ([9]) MAS5.0 12 4.71 1176 150 111 78
A. thal. GDS3225 ([38]) MAS5.0 4 5.50 832 290 161 21
D. rerio GDS1404 ([6]) PathStat 10 13.58 1776 136 11 14
D. mel. GDS1686 (I) ([43]) RMA 9 3.62 136 174 11 96
H. sap. CAMDA 08 ([1]) CLSS4.1 24 4.04 400 304 26 67
H. sap. GDS1375 ([36]) MAS5.0 70 3.25 6861 3561 160 316
H. sap. GDS810 ([5]) MAS5.0 31 4.37 72 135 9 51
H. sap. GDS2960 ([41]) RGP3.0 101 4.33 318 166 51 2
M. musc. GDS660 ([33]) MAS5.0 22 10.48 584 126 20 26
M. musc. GDS3221 ([34]) RMA 24 4.21 180 119 108 52
M. musc. GDS3162 ([35]) MAS5.0 10 4.38 797 446 112 66
M. musc. GDS1555 ([27]) MAS5.0 8 3.90 131 183 24 110
R. nor. GDS2946 ([24]) MAS5.0 15 4.57 146 157 14 306
R. nor. GDS972 ([20]) MAS5.0 44 4.98 369 163 94 71
D. mel. ”Spike In” ([7]) MAS5.0 6 3.74 401 1748 - -

Table 3.1: Overview of the biological data sets describing the organism (Org.), the GEO
ID (CAMDA 08 refers to the Endothelial Apoptosis contest datasets of the meeting
and ”Spike In” to the ”Golden Spike” experiment), the preprocessing method (Prep.),
the overall number of arrays (N), the average degrees of freedom (ν), the number of
common genes (comm.), the number of genes with noise model depending differential
expression assessment (diff.), the number of common GO terms (comm.) and finally the
number of noise model dependent GO terms (diff.). The GEO entry GDS1686 (I) refers
to the behavioural subset of the data (only the sleep deprived flies). In column prep.
we use MAS5.0 to refer to the Affymetrix MAS 5.0 quantisation method, RMA to refer
to the “Robust Multi-array Average” method by [18] (both used for Affymetrix arrays),
PathStat for referring to the package described in [28], CLSS4.1 to refer to the Codelink
Software Suite 4.1 and RGP3.0 to refer to Research Genetics’ Pathway software v. 3.0.

3.3 Alternative Normalisation

The results presented in the paper are based on data which has been normalised with
vsn methodology (see [15]). To assure that the found effects are not due to this specific
normalisation method, we have applied rma normalisation ([17]) to some of the data
sets where CEL files were available. Furthermore, we selected a subset of data sets and
applied loess and quantile normalisation as well as Liu’s normalisation based on probe-
level measurement error ([25],[26]). Then we compared the results to the ones of vsn
normalised data.

We have listed the detailed results in Table 3.2. Again all data sets prefer a student’s t
model with low degrees of freedom. In case of loess and quantile normalised data, where
variance stabilisation is apparently more important, the degrees of freedom estimate is
even lower than for the vsn data. We compare the results for the example above, the
human melanoma data (GDS1375). Here a student’s t model with about 1.1 degrees of
freedom has the highest posterior probability for both loess and quantile normalised data.
Figure 3.4 shows the results for two of the data sets for which we have included graphs
into the main paper. For the human melanoma data set the differences in the posterior
probabilities are eye-catching, as a large percentage of genes is classified differently w. r. t.
differential expression. The Arabidopsis data set represents the more typical case that
differences are less obvious when looking at the gene lists. But as we showed in the main
paper they gain weight when follow-up analyses, like in our case the Gene Ontology
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analysis, are applied.

GEO ID loess quantile
ν comm. diff. ν comm. diff.

GDS3216 2.02 1273 1272 1.13 1284 1017
GDS3225 1.24 933 1643 1.29 1141 1592
GDS810 1.13 355 860 1.18 487 892
CAMDA 08 1.06 295 1271 1.11 444 1057
GDS1375 1.14 1657 7020 1.15 1863 6881
GDS2960 2.94 268 270 2.85 276 307
GDS1555 1.15 786 2039 1.17 825 1972
GDS972 1.38 545 851 1.4 749 699

Table 3.2: Subset of data sets for testing alternative normalisations. We show the pos-
terior mean degrees of freedom ν and the numbers of common (’comm.’) and different
(’diff.’) genes which the two methods classified as differentially expressed with a prob-
ability of more than 85%. In all cases t distributions with small degrees of freedom
between 1 and 3 are preferred.

Interestingly we find that for loess or quantile normalised data the degrees of freedom
of the selected optimal t model are in general much lower than for vsn normalised data.
In almost all cases Cauchy-like t distributions were the preferred posterior model. This
observation is consistent with the findings by [30]. A possible interpretation for this
behaviour could be that these normalisation methods enforce outlying or non-Gaussian
data points which are better explained by very heavy-tailed models.

3.3.1 Spike-in data

We wish to include variation into the model which may come from 2 different origins.
Most importantly, variation of the biological components has to be included to reasonably
perform inference on biological data. The laboratory work always adds noise to the
measurements, to what amount however often remains unknown. We use the ”Golden
Spike” Experiment by [7] as a regularised data set where variation mainly stems from
technical components. For this experiment sets of RNA were chosen to have a predefined
fold change. The RNA was then hybridised to Affymetrix chips (for details see [7])

Firstly, we wanted to check the performance of our algorithm. Therefor we used the
preprocessing applied by [7] When comparing it against the methods [7] have considered
in their paper we found that our algorithm could compete with those methods w.r.t.
sensitivity and false discovery rate at the top end.

Secondly, we applied our algorithm to identify the appropriate noise model. To make
this data comparable to the majority of our data sets we used MAS5.0, as well as vsn for
preprocessing. Our astounding results showed that, also for data where the main source
of error is the laboratory work, a student’s t model fits much better than a Gaussian one.
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Figure 3.5: Difference in the ranked posterior probability of differential expression for
loess normalised data; each graph is ranked separately the genes on the x axis are ordered
w. r. t. decreasing posterior probability in the Gaussian model

31



3 Simulations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

genes

p
(I

g
|.
..
)

(i) GDS1555

0 0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

genes

p
(I

g
|.
..
)

(ii) GDS1375

Figure 3.6: Difference in the ranked posterior probability of differential expression for
quantile normalised data; each graph is ranked separately the genes on the x axis are
ordered w. r. t. decreasing posterior probability in the Gaussian model
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Figure 3.7: Difference in the ranked posterior probability of differential expression for
spike-in data, normalised with vsn; each graph is ranked separately the genes on the x
axis are ordered w. r. t. decreasing posterior probability in the Gaussian model

We compared the gene lists for genes with posterior probability of differential expression
against the list of genes in [7] which have a fold-change rate greater than 2 according to
the experimental settings. We could see see that the Student’s t model showed a higher
accuracy than the Gaussian model. At our chosen cut-off of 0.85 the Student’s t model
has an accuracy of 78% compared to 72% for the Gaussian model. Figure 3.8 plots the
cut-off vs. the accuracy of the Gaussian model and the Student’s t model on the spike-in
data.

These results give us an indication that at least partially the non-normal behaviour of
microarray data might be introduced by laboratory processes. However, there is no
reason to believe that laboratory work is the only cause for heavy-tailed behaviour of
the distribution of microarray data.

3.3.2 Non-parametric methods

Non-parametric methods are generally applied, when the validity of distribution as-
sumptions is unknown and doubted. Such approaches are therefore commonly used for
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Figure 3.8: Plot of cut-off vs. accuracy. The Gaussian model has its optimal accuracy at
at cut-off 0.85, which was for this reason empirically chosen as cut-off level for comparing
the respective gene lists; then the accuracy is about 72%. Contrary to that, the Student’s
t model has its optimum of 80% at the highest cut-off of 0.99. At the level of 0.85 its
accuracy is reasonably high at 78%.

robust assessment of microarray data, see [37] or [10]. We chose the following non-
parametric methods for analysing microarray data: the Kruskal-Wallis test, the classical
non-parametric version of one-way ANOVA, ANOVA on rank transformed and aligned
rank transformed data, as described by [8], as well as permutation tests based on such
(non-)parametric statistics, for example see [22].

Selecting these methods was motivated by good comparability, because they are non-
parametric generalisations of a one-way ANOVA approach. The Kruskal-Wallis test
is the non-parametric generalisation of the t test on ranked statistics. However, an
approximately parametric distribution of its test statistic is assumed. To avoid this
assumption a permutation test can instead be performed with the Kruskal-Wallis test
statistic. We performed such a permutation test using 10000 permutations to estimate
the distribution of the test statistic over the data set.

[8] evaluated several approaches for increasing the robustness of ANOVA models, in-
cluding rank transforming the data as well as using robust mean estimates, for example
like the truncated mean and the median. Since we wanted a non-parametric approach
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GEO ID KW perm. RANOVA (ART)
robust Gaussian robust Gaussian

GDS3216 39% 37% - -
GDS3225 - - - -
CAMDA 08 - - - -
GDS1375 86% 84% 86% 83%
GDS2960 76% 71% 76% 72%
GDS1555 - - - -

Table 3.3: Subset of data sets for testing non-parametric methods. ”KW perm” contains
the fraction of shared results at a p-value cut-off of 1% for the Kruskal Wallis permutation
test with the robust student’s t and the Gaussian model, ”RANOVA” the fraction of
shared results for aligned rank transformed ANOVA with the robust student’s t and the
Gaussian model, respectively. A dash signifies that the non-parametric method could
classify no gene as differentially expressed with a p-value smaller than 0.01 due to too
small replicate or sample size.

towards ANOVA, we chose the ANOVA on (aligned) rank transformed data. In the one-
way ANOVA setting, such as the one considered by us, there is no difference between
the different approaches of rank transforming the data. Differences would only occur for
interaction terms which assume that more than 1 factor is available and considered in
the analysis. The results for both methods are listed in Table 3.3.

To compare the approaches we selected all genes with a p-value of differential expression
above 1%. We then took the same number of top-ranked genes for the robust and the
Gaussian model and calculated the relative amount of shared genes which were classified
as differentially expressed. In cases with large enough sample and replicate size, the non-
parametric methods generally share a slightly larger fraction of genes with the robust
student’s t model than the Gaussian one. The better agreement of robust methods
shows that non-parametric approaches are in general to be preferred to parametric ones,
if the given sample size allows to apply them. However, our analysis also revealed a
major drawback of non-parametric approaches. Consistent with [40] we found that the
non-parametric methods suffered from lack of power, when few samples or replicates
were available. In cases, where only 2-3 replicates per group and 4-24 samples overall
were provided, the non-parametric methods were unable to identify any significant genes
(marked by the dashes in Table 3.3).

3.3.3 Probe-level measurement error

[25] have chosen a different approach towards robustifying their analysis by integrating
effects on probe-level into their probabilistic model. They use this probabilistic nor-
malisation approach to estimate the required variables for calculating the probe-level
measurement error. In [26] they fit Gaussian kernels with variance components depend-
ing on the variation of probe-level measurements. To assess the validity of Gaussian
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GEO ID
GDS3216 GDS810 GDS972

multi-mgMOS
ν 2.23 3.23 3.67
comm. 815 327 432
diff. 467 354 178

PPLR
ν 1.17 1.14 1.15
comm. 2504 668 1029
diff. 1045 919 622

Table 3.4: The results for the mmgMOS and the PPLR method separately for the 3 data
sets where we had CEL files available. ’comm.’ and ’diff.’ again signifies the number of
common and different genes which are classified as differentially expressed by the robust
and the normal model.

model assumptions for that kind of data we apply our algorithm to the posterior mean
estimates of their model.

For testing whether such representations are an alternative to heavy tailed noise models,
we applied our algorithm to multi-mgMOS normalised data. We also used it on the pos-
terior expression estimates, obtained by the PPLR method, to test the model’s Gaussian
noise assumption. When applying the algorithm to the mmgMOS normalised data we
found that the over all noise of the expressions followed a t distribution with degrees
of freedom between 2 and 3, see Table 3.4 However, when analysing the PPLR model’s
expression estimates, they are heavier tailed than their mmgmos normalised input data,
even though the model, inferring them, assumes Gaussian distributions, as shown in
Table 3.4.
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