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GBM Data  

mRNA 
• Level 1 
• Affymetrix HGU133A 

miRNAs 
• Level 2 
• Agilent miRNA 8x15K 

CNV 
• Level 3 
• aCGH 

Methylation 
• Level 2 
• HumanMethylation27 

BeadChip Array 

NGS 
• Level 3 
• List of somatic 

mutations GAII 



Low-level Analysis 

mRNA level 1 data 
•  495 tumor samples and 10 controls  

•  normalized using quantile normalization  
•  summarized using medianpolish 

•  classification based on log fold-change, B-statistic 
and adjusted p-values 



Low-level Analysis 

miRNA level 2 data 
•  245 tumor sam- ples and 10 controls 

•  According to TCGA portal data were background corrected 
using RMA and quantile normalized.  



Low-level Analysis 

Methylation level 2 data 
•  from 291 tumor samples and 1 control with 6 replicates  

•  normalized and processed using genome wide Infinium 
HumanMethylation27 BeadChip Array  

•  ~ 27,578 CpG sites.  

•  Beta-values and confidence p-values were further examined 

•  Missing beta-values were calculated using the signal intensity 
(M) and the un-methylated signal intensity (U). 



Low-level Analysis 

CNVs level 3 data 
•  Data for 461 samples processed with array CGH technology 

•  Data reported to be lowess normalized.  

•  Regions of gain and loss were identified using Circular Bi- 
nary Segmentation algorithm 

Our part: 
•  Which genes are in each reported segment? 

•  Algorithm 



Low-level Analysis 

NGS level 3 data 
•  somatic nucleotide alteration data for 143 samples in 3 

databases were analyzed. 

•  The three databases were combined and relevant mutations 
were selected.  

•  The final database contained 1032 unique gene-mutation 
pairs, for 500 different genes and 7 different mutation types:  

Missense  
Silent  

Splice_Site  
Frame_Shift 

Unkown  Nonsense 
In_Frame 



Clinical Data 

IDs curated "TA.0001.F.D.44.WT.NPG.RA.CH.B1” 
 
•  T : describes sample type (T=Primary Tumor, B=Blood Derived 

Normal, N=Solid Tumor Tissue) 

•  A : indicates replicate A=1, B=2 
•  "0001”:  corresponds to patient ID  

•  F : indicates gender (F=Female, M=Male) 

•  D : corresponden al Vital status (D= Deceased, L=Living) 

•  "44” : is the patient´s age 

•  Cancer status:  WT=with tumor,TF= tumor free 
•  Prior glioma:  PG= Prior glioma,NPG=non-prior glioma 

•  Therapy:  CH= chemotherapy,HO=hormonal therapy,IM= 
immuno therapy,RA=radiations therapy,TM= targeted 
molecular therapy 

 

 

 
  



All Data 

•  Genome_Wide_SNP_6 --> GWS6  
•  HG-CGH-244A --> CGH244 

•  HumanHap550 --> Hh550 
•  HumanMethylation27 --> HMet27 

•  IlluminaDNAMethylation --> IllMet 

•  HT_HG-U133A --> Exp133A 
•  HuEx-1_0-st-v2 --> ExpExon 

•  AgilentG4502A_07 --> ExpAgi 

•  H-miRNA_8x15K --> ExpmiR 
•  ABI --> ABI 

•  HG-CGH-415K_G4124A --> CGH415 
 
 

  



TCGA data portal 

Notes & Remarks 

•  Gene expression data from three different platforms 
was badly combined. So can´t always trust level 3 
data ... 

•  Access to SNP 6.0 array data would have given us the 
opportunity of doing some ancestry analysis 

•  Access to Level 1 Human Gene 1.0 ST would have given 
us a chance to do outlier detection using COPA 



How did we do it? 
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Computational Genomics 
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Strategy for integrative 
analysis 

3-State Model 



Three-State Model 

•  Combinatorial data driven approach 

•  We first selected the list for most significant genes 
based on mRNA levels 

•  For each gene i, let Si1, Si2, ... , Sik be a sequence of 
states where Sik denotes the state of gene i in platform k 

•  Each state can take values {-1,0,1} based on whether it 
reports to be up, with no change or down regulated 
respectively. 

•  Platforms are combined following basic set theory  

Pi ! Pj = (Pi " Pj )! (Pi \ Pj )! (Pj \ Pi )



Three-State Model 

Example 

•  Suppose we choose 3-Platform approach 

{Mutation,  Methylation,  mRNA} 
 

•  A gene taking values {1,-1,1} indicates that it contains 
somatic nucleotide alteration, is hypo-methylated and 
differentially up-regulated  



How many scenarios?  

•  Under the approach described we have 3k possible 
scenarios for a k-platform analysis assuming a 3-state 
model 

•  It allows simple consideration such as 2-state for NGS 

•  So, when we begin the integration we could have up to 

 possible combinations (scenarios) 

•  How many do make sense? 
•  How many do we have? 
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Results & Visualization 

3-Platform Integration 
2 Platforms for validation 
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Expresión                             NGS somatic mutations                            metilación !



visualization  



visualization  
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Discussion & Remarks 

A case of study 
3-MDI as tool 

Noise classification 
CpG islands and methylation profiles 

Machine Learning 



A case of study 

•  No mutations present 

•  Hyper-methylated 
•  Up-regulated 

{0, 1 , 1} 



A case of study 



A case of study 



DNA methylation—miRNA network analysis 

•  Integrated analysis of DNA methylation profiles in CpG 
islands and miRNA differential expression can be 
explored with our 3-state model 

•  It can also be represented in a network-based analysis 

•  Results suggest that DNA methylation and miRNA 
transcriptional regulation are closely related for a 
particular state-vector representing a novel 
characteristic pattern. 



DNA methylation—miRNA network analysis 



DNA methylation—miRNA network analysis 

•  For instance, this analysis shows 9 miRNAs related (as 
putative targets) to genes over-represented with respect 
to changes in the CpG methylation status.  

•  That is, genes whose methylation profiles and miRNA 
targeting status may potentially affect their 
corresponding mRNA expression levels. 

•  Pathway enrichment analysis using GO for this set of 9 
genes shows only a few pathways significantly enriched 
in biological processes mainly involved in neuronal 
functions (eg. Axon guidance, synaptical transmission) 



Remarks 

•  Data driven approaches for large multiplatform 
data may fit better than biological ones 

•  Each additional genomic dimension increases both 
the amount of information and consequently the 
biological and computational complexity of the 
analysis 

•  Noise behavior should be explored 

•  Machine learning approaches can be applied 
regardless of the number of platforms 

•  Bayesian approach might be improved by the prior 
information from the counts 


