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Main paper abstract

A major challenge in microarray design is the selection of highly specific

oligonucleotide probes for all targeted genes of interest while maintaining

thermodynamic uniformity at the hybridization temperature. We intro-

duce a novel microarray design framework (TherMODO) that for the first

time incorporates a number of advanced modelling features: 1) A model of

position-dependent labelling effects that is quantitatively derived from exper-

iment. 2) Multi-state thermodynamic hybridization models of probe binding

behaviour, including potential cross-hybridization reactions. 3) A fast cal-

ibrated sequence-similarity based heuristic for cross-hybridization prediction

supporting large-scale designs. 4) A novel compound score formulation for

the integrated assessment of multiple probe design objectives. In contrast

to a greedy search for probes meeting parameter thresholds, this approach

permits an optimization at the probe set level and facilitates the selection

of highly specific probe candidates while maintaining probe set uniformity.

5) Lastly, a flexible target grouping structure allows easy adaptation of the

pipeline to a variety of microarray application scenarios. The algorithm and

features are discussed and demonstrated on actual design runs.

This online supplement is archived at http://bioinf.boku.ac.at/pub/

thermodo2008/. Data and scripts may also available from that archive.

Please note that the supplement and auxiliary materials are under Copy-

right © 2007–2008. Software is available on request from the authors. (We

can either run our code on your data, or collaborate in installing our system

at your site.)
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Chapter S-1

Using this archive

S-1.1 Viewing the Supplement and material

referenced

This document is provided in PDF format (cf. Section S-1.2). Auxiliary

information is referenced by HTTP URLs (Hyper Text Transfer Protocol –

Universal Resource Locations). If you view this document in a stand-alone

browser, e. g., Acrobat Reader, clicking on a link should open a new browser

window showing the content to which the link refers.

If you are viewing this document through a plug-in, your browser may loose

the original page context when following a link, so when you go back to this

document, you might return to the title page. In such a case you may want

to save this document to a local disk, and then view it in a stand-alone PDF

browser, like Acrobat Reader.

S-1.2 Description of file formats

File formats used in this archive include the following:
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• American Standard Code for Information Interchange (ASCII) is used

in data files, pre-formatted text for reports, and program code / script

files. Columns in data files are typically Tab delimited.

This format is the simplest and should cause the least problems. In

particular, Tab delimted files are well viewed in any spreadsheet pro-

gram.

• Adobe Portable Document Format (PDF) for typeset material. This

supplement is made available in PDF.

There are free viewer programs available for this format. To obtain

such a viewer, please visit, for example:

– Ghostscript, Ghostview and GSview from the Computer Sciences

Department at the University of Wisconsin-Madison, USA,

– Adobe Acrobat Reader from Adobe Inc., USA.

Many browser programs for the World Wide Web can run so-called

plug-ins for viewing PDF content.

• Adobe PostScript (PS) for typeset material. To obtain free tools for

viewing and printing, please visit, for example, Ghostscript, Ghostview

and GSview from the Computer Sciences Department at the University

of Wisconsin-Madison, USA. These files are provided for convenience

only, and are usually the best format for printing.

• bzip2 compressed files. Large files (particularly text) may be com-

pressed with bzip2 for efficiency. Free utilities to unpack such files are

available from http://www.bzip.org/.

• Various graphics file formats. Typical formats include JPEG, which is

a lossy compression format well suited for photos with smooth gradi-

ents, and TIFF, which is a particularly flexible format, supporting both

lossy and non-lossy compression schemes (TIFF-FAQ). For viewing or

converting many graphics file formats, free tools are available (Graph-

icsMagick, ImageMagick).

2

http://www.cs.wisc.edu/%7eghost/
http://www.adobe.com/products/acrobat/readstep.html
http://www.cs.wisc.edu/%7eghost/
http://www.cs.wisc.edu/%7eghost/
http://www.bzip.org/
http://www.jpeg.org/
http://partners.adobe.com/asn/developer/pdfs/tn/TIFF6.pdf
http://home.earthlink.net/~ritter/tiff/
http://www.graphicsmagick.org/
http://www.graphicsmagick.org/
http://www.imagemagick.org/


• ZIP archives. Larger collections of files are provided in compressed

archives. Free utilities to unpack these archives are available from the

Info-ZIP group. Users of the Microsoft Windows system may wish to

use WinZIP.

3
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Chapter S-2

Methods

S-2.1 Implementation

The framework has been implemented as a series of interacting Perl scripts

that make heavy use of nested data-structures and associative arrays

(hashes/maps) for configuration, lookup, and caching. For memory efficiency,

simple arrays are kept as packed structures. Parametrization and interaction

of tools uses poor man’s relational tables in form of flat text files. While not

as robust as an RDBMS, this makes intermediary results easy to access from

any computing environment.

S-2.2 Quantitative labelling model

TherMODO employs a quantitative model to calculate the probability of the

labelling process generating a labelled product that includes the probe bind-

ing site. To demonstrate the impact of positional effects we selected a popular

microarray protocol that was appropriate for the E. coli design discussed in

the Manuscript: randomly primed labelling by reverse transcriptase incor-

porating amino-allyl dUTP (see S-2.2.2). In this section we motivate the

model used and detail the experiments allowing parameter estimation. The
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model fit is discussed in the Results section (S-3.1).

S-2.2.1 Model construction

The probability that a particular template region becomes part of a labelled

sequence is affected by enzyme processivity and primer type. We begin by

introducing simple schematic models which serve as building blocks in the

construction of more comprehensive, realistic models. Schematic illustrations

of the models and their probability distributions are compiled in Figs S-2.1

and S-2.2.

Let us first consider models for full-length labelling (Fig. S-2.1, left-hand

panels).

Full length, end-primed labelling

End-primed labelling with complete enzyme read through constitutes the

most simple model, in the sense that all labelled products will be identical.

Nucleotides at all positions x will be part of the labelled product with equal

probability

PL(x) = 1/n ,

for a template of length n (Fig. S-2.1, top left-hand panel). The model is an

appropriate approximation for short transcript lengths and high-processivity

labelling reactions. It can, e. g., be applied to an oligo-(dT)-primed reverse

transcriptase incorporating amino-allyl dUTP and is directly supported by

the TherMODO pipeline.

Full length, random-primed labelling

Random-primed labelling with complete enzyme read through generates a set

of labelled products starting at random template positions and all ending at

the 5′-end of the template. Regions close to the 5′-end are hence more likely
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Figure S-2.1 : Schematic illustration of different labelling models, with dark

bars depicting templates and light bars representing labelled products. The

probability that a region on the template is part of a labelled product is

affected by the enzyme processivity and the type of primer used. Full-length

labelling models in the left-hand panel are compared to enzyme processiv-

ity limited labelling in the right-hand panels. Top panels illustrate models

for end-primed labelling, whereas bottom panels depict random-primed la-

belling.
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Figure S-2.2 : The probability that a region on the template is part of a la-

belled product is affected by the enzyme processivity and the type of primer

used and is shown on the y-axis. As an example, the pronounced positional

labelling effects are illustrated for a 2000 bp long transcript and a character-

istic length of 900 bp for each of the four models discussed.
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because they are part of most products, short or long (Fig. S-2.1, bottom

left-hand panel). The probability that a nucleotide will be part of a labelled

product,

PL(x) = x/Z ,

is thus proportional to the distance x from the 3′-end of the template. The

constraint
∑n

1 PL(x) = 1 yields the normalization constant

Z = n (n+ 1)/2 .

The model is an appropriate approximation for short transcript lengths and

high-processivity labelling reactions. It can, e. g., be applied to a random-

primed reverse transcriptase incorporating amino-allyl dUTP and is directly

supported by the TherMODO pipeline.

Processivity limited, end-primed labelling

The models considered so far assume full-length labelling. In most experi-

mental settings, however, this assumption is not a good approximation and

labelling is frequently interrupted before reaching the end of the template.

It is known that the secondary structure and composition of a template af-

fects labelling enzyme drop off (1), and competitive binding further reduces

labelling processivity in complex mixtures.

Let us consider a model for end-primed labelling where the labelling enzyme

equally likely drops off the template at any labelling step or else continues

with the probability c. A nucleotide at the distance x from the 3′-end of the

template will then be part of a labelled product with the probability

PL(x) ∝ cx =: e−x/λ ,

showing an exponential decay with the characteristic length λ (Fig. S-2.1, top

right-hand panel). The characteristic length λ describes how rapidly longer

products become more unlikely: a product that is λ nt longer is about 63%

less likely. Under the constraint
∑n

1 PL(x) = 1 one obtains the normalization
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constant

Z =
c (1− cn)

1− c
.

This distribution provides, e. g., an appropriate model for an oligo-(dT)-

primed reverse transcriptase incorporating Cy-dye conjugated nucleotides,

and related methods. Protocol particulars like the enzyme and label types

will affect the characteristic length λ of the process, which needs to be meas-

ured. The TherMODO code supports this model for user-supplied λ.

Processivity limited, random-primed labelling

Here, we finally combine the effects of limited enzyme read through and the

different starting positions of random-primed labelling along the template

(Fig. S-2.1, bottom right-hand panel).

A nucleotide at the distance x from the 3′-end of the template will be part

of a labelled product with the probability

PL(c) ∝
x−1∑
i=0

ci ∝ 1− cx ,

where i sums over all primer binding sites from x to the template 3′-end.

The decay of the exponential component can again be characterized by a

length-scale λ, so that cx =: e−x/λ. The probability distribution

PL(x) = (1− cx)/Z , (S-2.1)

has the normalization constant

Z =
n∑
x=1

(
1− cx

)
= n− c (1− cn)

1− c
.

This distribution provides, e. g., an appropriate model for a random-primed

reverse transcriptase incorporating amino-allyl dUTP, and related methods.

Protocol particulars like the enzyme and label types will affect the character-

istic length λ of the process, which needs to be measured. The TherMODO

code supports this model for user-supplied λ.

We will next demonstrate how λ can be obtained experimentally.
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S-2.2.2 Experimental assay of labelling characteristics

A quantitative labelling model accounting for both random priming and lim-

ited labelling enzyme processivity, Eq. Eq. (S-2.2.1)), was fitted to meas-

urements of an actual labelling reaction. We employed a popular labelling

protocol that was appropriate for E. coli transcripts, which lack poly-A tails.

The labelling protocol uses a random-primed reverse transcriptase to in-

corporate amino-allyl dUTPs into cDNA transcripts. Avoiding bulky dye-

conjugated nucleotides that impede transcription, fluorescent dyes can then

be conjugated to the amino-allyl modified nucleotides in a separate step.

For the labelling experiment, RNA extracted from E. coli strain

HMS174(DE3) containing a pET11a (GFPmut.3.1) plasmid vector (2)

was reverse transcribed using the AffinityScript HC Reverse Transcriptase

component of the FairPlay III Microarray Labelling Kit (Stratagene,

Cat. No. 252012). Amino-allyl dUTPs and random hexamer primers

(MWG Biotech AG) were employed according to the instruction manual

provided with the kit. Reverse transcripts were then, however, not con-

jugated with fluorescent dyes because the bulky dyes would interfere with

the subsequent measurements of length distributions. The unlabelled RNA

and the produced labelled cDNA samples were then analysed by capillary

electrophoresis (Agilent 2100 Bioanalyzer, RNA nano LabChip) and on a

1% agarose gel (cf. Fig. S-3.1). Gel images were quantified using imageJ

(http://rsb.info.nih.gov/ij/). With the help of the size markers (RiboRuler

Ladder, Fermentas, cat #SM1812), the measured fluorescence signal distri-

butions of the samples where then transformed into molecule length distribu-

tions (Fig. S-3.1).

S-2.2.3 Fitting the labelling model, simulations

Forward simulations were used to generate model predictions, iterating the

below algorithm:
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• Assume a template RNA molecule according to the observed distribu-

tion of RNA molecule lengths.

• Pick a random hexamer primer binding site along this RNA template.

• Reverse transcription.

– Add nucleotides to the cDNA until the reverse transcriptase either

reaches the end of the template RNA or until it drops off the

template by random chance with probability c.

• Record the length of the resulting cDNA.

At convergence, this yields the distribution of the cDNA molecule lengths

derived from simulated labelling reactions. Simulated and measured dis-

tributions could then be compared. Selecting the best simulation directly

gives an estimate of the process parameters, in this case, the characteristic

transcription length λ of Eq. Eq. (S-2.2.1) – see Results (S-3.1).

S-2.3 Probe binding site accessibility

For reasons of computational efficiency when considering many probes of

different sizes for longer transcripts, we use two steps to calculate the prob-

ability PA of a probe binding site being accessible, i. e., not part of a stable

secondary structure of the transcript at Thyb. Exploratory studies of probe

binding behaviour suggest that a stretch of 13–15 matching nucleotides (nt)

can already give rise to detectable cross-hybridization (3), and it can thus be

expected that regions of this size are typical seeding regions for duplex form-

ation. In a first step we therefore use RNAplfold to obtain the accessibility

of 13 nt regions in the transcript, where we set the size u of the unpaired

region to 13 and the maximal span L and window size W both equal to 100.

The results for the short regions are then combined to calculate the prob-

ability that the entire probe binding site is accessible. For an oligo binding
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region of length l, the maximum number m of 13-mers that can be accom-

modated in this region is equal to l/13, while the number of offset spacings is

the remainder f . The probability of accessibility starting at target position x

is then calculated as

PA =
1

f + 1

f∑
i=0

m∏
j=1

P13

(
x+ 13 j + i− 1

)
,

from the probabilities P13 of 13-mers at particular positions in the target

sequence being unpaired.

We have verified that this two-step procedure is a very good approximation

of RNAplfold results for the entire binding site (data not shown).

The cross-match accessibilities are calculated similarly.

S-2.4 Calibrated heuristic – default model

scores

Probe candidates without any associated cross-matches are assigned a ‘de-

fault’ integrated Cross-Match score that is calculated from a conservative

estimate of PB (regression minus two standard deviations, see Figs S-3.3(a)

and S-3.3(b)) as well as the respective observed mean of PL and PA as an

unbiased estimate. This correctly avoids ‘infinitely’ good probes when no

sequence similarity hits to potential binding partners other than the target

transcript were found.

With this approach, the cross-hybridization potential of probe candidates

with no sequence similarity to cross-matches can be assessed in a manner

consistent with how probes with identified cross-matches are treated, thus

allowing a quantitative comparison of all probes.
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S-2.5 Characterization of alternate probe

designs

For a characterization of alternate probe designs we employed three popular

publicly available microarray probe design tools. OligoRankPick (4), OligoAr-

ray 2.1 (5), and YODA (6) were each used to generate probes for a test set of

4,471 E. coli targets. Extending published designs (4, 6) for protein coding

subsets of 4,289 and 4,237 sequences (YODA and OligoRankPick), the full

target set includes non-coding RNAs which can be challenging due to their

strong secondary structures. All programs were run with the default settings

for their parameters, unless noted otherwise.

OligoArray allows for variable oligonucleotide lengths for improved probe uni-

formity. Probes were therefore designed with minimum and maximum probe

lengths of 65 and 69 bp, which provides a good compromise of sensitivity

and specificity (7).

Earlier microarray designs (4, 6) for E. coli have similarly used probe lengths

of 60 (YODA) and 70 (OligoRankPick). As these tools design probes of fixed

lengths, designs were run for a probe length of 65 bp.

OligoArray default temperature thresholds were adjusted for probe length

to accept probe–target melting temperatures of 91–96 ℃, and reject probe

secondary structure and cross-hybridization stable at 69 ℃ (8).

TherMODO probe design is detailed in the Manuscript.

All probe sets were characterized by probe binding strength (PB), probe self-

folding (PP ), target region accessibility (PA), and positional labelling effects

(PL). See Manuscript for details on these calculations.
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Chapter S-3

Results

S-3.1 Quantitative labelling model fit

We have demonstrated how the characteristic product length λ of a labelling

process can be obtained experimentally. This was shown for a popular la-

belling protocol, random-primed reverse transcriptase incorporating amino-

allyl dUTPs into cDNA transcripts (see S-2.2.2). In particular, this labelling

protocol is also appropriate for the discussed E. coli design run. Oligo-(dT)

primed labelling cannot be used for prokaryotic mRNAs, which are not poly-

adenylated. The length distributions of the unlabelled RNA templates and

labelled cDNA products were measured with an Agilent 2100 Bioanalyzer

and on a 1% agarose gel. Compared to the RNA lengths, the length distri-

bution of the corresponding cDNAs were shifted towards smaller molecule

lengths, reflecting the effects of both limited labelling enzyme processivity

and random priming (Fig. S-3.1, right-hand panels).

A model that accommodates both the effects of random priming and limited

labelling enzyme processivity (Eq. Eq. (S-2.2.1)) was fit to the data. The

length distribution of labelled cDNA products can then be predicted from

the length distribution of mRNAs by forward simulation. Simulation results

(dashed lines) could closely reproduce the observed average length distribu-

14
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Figure S-3.1 : Models simulating the reverse transcription reaction consist-

ently reproduce the observed average length distribution of labelled cDNA

products. This is shown for two complementary measurement methods.

Length distributions of RNA and cDNA nucleotides were recorded by ca-

pillary electrophoresis (Agilent Bioanalyzer, top panels) and assessed on a

1% agarose gel (bottom panels). Arrow heads indicate ladder size markers.

Bioanalyzer and gel RNA measurements show the typical ribosomal RNA

peaks above 1000 bp as well as a pronounced tRNA peak below 200 bp.

These do not, however, affect the model fit (data not shown). Model pre-

dictions (left-hand side panels, dashed lines) are well matched to the the

average observed cDNA length distributions derived from either the Bioana-

lyzer (top) or the agarose gel measurements (bottom).
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Figure S-3.2 : Comparison of the model fits for (a) Bioanalyzer data and

(b) agarose gel measurements. The residual sum of squares (y-axis) is shown

as function of the characteristic length λ (x-axis), with the lines plotting a

Lowess average. Fits have been computed for λ = 100, 150, 200, . . . , 2000.

The plots show that, for the examined labelling protocol, a processivity with

λ in the range 600–700 bp is supported by both independent assays.

tions (solid lines) derived from either the Bioanalyzer data or the gel meas-

urements (Fig. S-3.1, left-hand panels). Comparing model fits showed good

agreement between the independent Bioanalyzer and gel assays (Fig. S-3.2).

For the examined labelling protocol, both sets of measurements supported

a processivity with a characteristic product length λ of about 600–700 bp.

In the TherMODO probe design run for E. coli that is discussed in the Ma-

nuscript, positional labelling effects could thus be considered quantitatively

using a typical characteristic length of 650 bp for the model introduced,

Eq. Eq. (S-2.2.1).

Enzyme manufacturers report full length transcripts of several thousand

basepairs when incorporating standard nucleotides with target-specific

primers. It is noteworthy that the characteristic lengths obtained here are

considerably lower. Several factors such as template secondary structure and

16



sequence composition (1), nucleotide modifications, and a complex mixture

of templates competing for reagents clearly affect the observed processivity

of the enzyme under typical microarray labelling conditions. This explains

the average positional effects (9) of probe binding sites along the target tem-

plate and highlights the need for quantitative models of the labelling process

already during microarray probe design.

S-3.2 Calibrated heuristic – regression

Sequence similarity based filters such as Blast are widely employed to man-

age the computational complexity of a comprehensive probe candidate search.

Not only will these filters, however, miss relevant cross-matches compared to

more sensitive thermodynamic calculations (6), the question more gener-

ally arises on how to quantitatively assess probe candidates that have some

cross-hybridization potential versus probes with no Blast identified off-

target sequence similarities (‘cross-matches’). Current probe design meth-

ods assume that probes that have no identified off-target sequence identities

are perfectly specific. As a result, probe candidates with undetected cross-

hybridization potential are preferred over potentially better candidates with

a small identified cross-hybridization potential, accepting probes with higher

true cross-hybridization potential, stronger secondary structure, or labelling

probability.

For both E. coli and human, random samples of 1000 probe candidates

with no identified off-target sequence similarity were assessed for cross-

hybridization potential by thermodynamic calculations. The RNAduplex tool

was used to compute the probe–transcript binding strengths for all possible

binding partners. Fig. S-3.3(a) displays results for E. coli, while Fig. S-3.3(b)

shows the corresponding data for human. For each probe candidate, we

plot the binding energy of the strongest cross-match. The relation between

the probe–target binding energy ∆Gtarget and the worst cross-match binding

strength ∆Gxhyb allows a conservative estimate by linear regression (black

17
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Figure S-3.3 : Calibration of the Blast heuristic prediction of cross-

hybridization for probes with no cross-matches detected by sequence similar-

ity. The x-axis plots the Gibbs free energy ∆Gtarget of probe–target binding

and the y-axis shows the Gibbs free binding energy ∆Gxhyb of the strongest

cross-match predicted by thermodynamic models. The black lines repres-

ent the conservative regression-based estimate. Panel (a) shows probes from

E. coli and panel (b) shows human data.
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line = regression trend minus two standard deviations). For E. coli, less

than 4% of probes had cross-matches beyond the conservative estimate. Ex-

amining the respective regression based estimate for human, less than 5%

of probes had cross-matches beyond the black line. Interestingly, one can

very well use the regression based estimates interchangably (with only 1% of

E. coli probes beyond the human based estimate and less than 6% of human

probes beyond the E. coli based estimate).

One can thus make a conservative estimate of the cross-hybridization po-

tential of probe candidates with no off-target sequence similarities, based on

either organism, e. g.,

∆Gdefault = (0.13± 0.02) ∆Gtarget − (8.33± 1.24) , (E. coli regression)

as generic heuristic rule.

S-3.3 Characterization of alternate probe

designs

The three alternate probe design programs examined represent different es-

tablished approaches to probe design and have complementary features. For

instance, YODA incorporates a custom sequence similarity search (SeqMatch)

for the identification of potential cross-hybridization that is more sensit-

ive than a Blast run with typical parameters. OligoArray employs ther-

modynamic models for the assessment of probe–target duplexes, cross-

hybridization, and self-folding. Both YODA and OligoArray use greedy search

for selecting probes that match specified design criteria. In contrast, Oli-

goRankPick chooses probes from a pool of candidates per target using a

weighted rank-sum strategy for a number of probe qualities such as probe

specificity GC-content, self-binding, and sequence complexity. With the ex-

ception of YODA, the tools employ a Blast-based filter for identifying cross-

hybridization.

For a comprehensive assessment of the compiled probe sets, full model ther-
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Program Transcripts with Unique Unique corresp.

& Link probes probes probes TherMODO

TherMODO 4,471 4,381 –

OligoRankPick 4,471 4,357 4,381

OligoArray 4,222 4,157 4,166

YODA 4,110 4,110 4,110

Table S-3.1 : Transcript coverage, overview. The number of transcripts

covered by each design is shown. The number of unique probes limits the

number of distinct transcripts that can be discriminated. The last column

shows the number of unique TherMODO probes for the transcripts covered

by each of the other designs. The program name links to a Tab-delimited

text table of probe design results.

modynamic calculations were directly applied to all probes and their poten-

tial binding partners. The resulting measure of specificity ∆I is, in particular,

independent of the algorithms and any sequence-similarity based heuristics

employed in the original design processes.

Probe design results (follow the links in Table S-3.1) reflect the different

design strategies and probe selection criteria of the examined tools. The

achieved target coverage varied considerably between the examined tools.

The number of transcripts for which probes could be designed is shown in

Table S-3.1, together with the number of unique probe sequences constructed

for each design, which reflects the maximum number of targets that can

actually be descriminated. The OligoRankPick and TherMODO designs, both

based on non-greedy probe selection, had the highest target coverage and

featured higher numbers of unique probe sequences.

Figure S-3.4 provides a number of plots relating probe properties of the dif-

ferent designs. There are three blocks of panels, showing results for OligoR-

ankPick (columns 1–3), OligoArray (columns 4–6), and YODA (columns 7–9).

The columns in each block consider measures of binding strength PB, sig-
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nal intensity Itm and specificity ∆I = Itm/Ixm. In the top row scatterplots,

each dot represents the probe for a particular transcript, with the Ther-

MODO value on the x-axis, and the y-axis showing the value for one of the

other tools. The middle row compares the distributions of values between

designs. Finally, the bottom panels display the distribution of differences

per probe, with the dashed line showing the median. Instead of exploiting

sequence-similarity based heuristics for speed, in this assessment, full model

thermodynamic calculations were applied to all probes and their potential

binding partners.

On average, the sensitivity of probes designed by TherMODO compares fa-

vourably, with a higher Itm for about three in four transcripts, and typical

probe sensitivity improving by 11–17% (see statistics and Fig. S-3.4, bottom

row, middle column in each block). While all tools designed probes of ex-

cellent specificity (∆I > ∆I ′ = 1012) for the majority of genes, differences

could be observed for more difficult subsets of about 6–12% of design tar-

gets. In particular, probes from the TherMODO design were more specific

than probes from the other three designs, with a (median) 1000-fold im-

provement in probe specificity ∆I (see statistics and Fig. S-3.4, bottom row,

third column in each block). Only a single TherMODO probe had slightly

lower specificity than the corresponding OligoRankPick designed probe: This

alternative probe, however, had an unusually low sensitivity. The slight re-

duction in specificity (RT log ∆I = −1.5), was thus more than made up

by the improved sensitivity (RT log ∆Itm = +5.7) while at the same time

contributing to improved overall probe set unformity.

So as to also allow direct comparisons between the three alternate probe

designs, we also examined probe properties for the subset of 4,049 targets that

were common to all designs. Results remained similar (see statistics), with

the non-greedy approaches (TherMODO and OligoRankPick) faring better

than the other tools.

For the probe lengths studied here, performance typically improves with

length (7). As some tools consider probes of varying lengths whereas others
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design probes of fixed lengths, it is interesting to separate length effects,

e. g., by focussing on a subset of 65-mer probes. Figure S-3.5 plots probe

characteristics for 65-mers. The results remained similar with TherMODO

having better overall sensitivity and specificity (see statistics).

In summary, through the above steps, we have shown by multiple criteria

that probe characteristics of the TherMODO design compared favourably to

designs by the examined established alternate tools. In particular, we could

test the robustness of the observed probe qualities by subtracting probe-

length effects and ensuring that the heuristic score did not unfairly skew

results.

For a complete compilation of the data as well as the additional plots for the

studies discussed in this text, please refer to the tables S-3.2 and S-3.3 below.
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Oligonucleotide probe design characterization study: statistics and plots

Full scores

All pairwise comparisons between designs Fig. S-3.4

All pairwise comparisons between designs, for 65-mers only Fig. S-3.5

All comparisons for designed probes of targets common to all designs Plots

All comparisons for designed probes of targets common to all designs, for 65-mers only Plots

Raw scores

All pairwise comparisons between designs Plots

All pairwise comparisons between designs, for 65-mers only Plots

All comparisons for designed probes of targets common to all designs Plots

All comparisons for designed probes of targets common to all designs, for 65-mers only Plots

Table S-3.2 : Table of all statistical data and plots for the characteriziation

of different probe designs. Results with Raw Scores are included to allow an

examination of the effect of different thresholds ∆I ′. The results in the Full

Scores section use the conservative ∆I ′ = 1012 motivated in the manuscript.

Probe design TherMODO evaluation

TherMODO Probe evaluation

OligoRankPick Probe evaluation

OligoArray2 Probe evaluation

YODA Probe evaluation

Table S-3.3 : Table of different probe design sets and their corresponding

characterization by TherMODO.
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Figure S-3.4 : Characterization of probe properties from E. coli design runs. Instead of exploiting sequence-similarity

based heuristics for speed, in this assessment, full model thermodynamic calculations were applied to all probes

and their potential binding partners. TherMODO probes are compared to probes designed by three popular tools:

OligoRankPick (columns 1–3), OligoArray (columns 4–6), and YODA (columns 7–9). The columns in each set consider

binding strength PB, signal intensity Itm and specificity ∆I = Itm/Ixm. In the top row scatterplots, each dot

represents the probe for a particular transcript, the TherMODO value on the x-axis, and the y-axis showing the

value for one of the other tools. The middle row compares the distributions of values. The bottom row plots the

distribution of differences per probe, with the dashed line showing the median. Probes of perfect specificities in both

designs did not contribute to the displayed histogram of ∆I differences. All values are shown on a log10 scale. For

comparison, the same plots are shown in Fig. S-3.5 for subsets of probes with equal lengths 65.
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Figure S-3.5 : Characterization of probe properties for 65-mers from E. coli design runs. Instead of exploiting

sequence-similarity based heuristics for speed, in this assessment, full model thermodynamic calculations were applied

to all probes and their potential binding partners. TherMODO probes are compared to probes designed by three

popular tools: OligoRankPick (columns 1–3), OligoArray (columns 4–6), and YODA (columns 7–9). The columns in

each set consider binding strength PB, signal intensity Itm and specificity ∆I = Itm/Ixm. In the top row scatterplots,

each dot represents the probe for a particular transcript, the TherMODO value on the x-axis, and the y-axis showing

the value for one of the other tools. The middle row compares the distributions of values. The bottom row plots

the distribution of differences per probe, with the dashed line showing the median. Probes of perfect specificities in

both designs did not contribute to the displayed histogram of ∆I differences. All values are shown on a log10 scale.
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Figure S-3.6 : Scatter plot of the melting temperature (Tm) on the x-axis

and PB[log] on the y-axis for TherMODO probes. For illustrative purposes,

the plot is generated from a random sample of 1000 probes.
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Figure S-3.7 : Scatter plot of the GC content the x-axis and PB[log] on the y

axis for TherMODO probes. For illustrative purposes, the plot is generated

from a random sample of 1000 optimal probes with a little random jitter

added to the GC content to improve display. Probes of length 69 are in

black, while 68-mers, 67-mers, 66-mers, and 65-mers are in blue, magenta,

cyan, and red, respectively.
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