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Abstract 

Oligonucleotide probes are increasingly the method of choice for many modern 
DNA microarray applications. They provide higher target-specificity, probe se-
lection gives improved experimental control of hybridization properties, and tar-
getting of specific gene subsequences allows the better discrimination of highly 
similar targets such as splice-variants or gene families. Only recently has there 
been substantial progress in dealing with the complexities of probe set design 
and probe-specific signal interpretation. After a discussion of advantages and 
disadvantages of oligonucleotide probes in comparison to amplicons, this manu-
script therefore focusses on recent advances and remaining key challenges in 
probe design and computational data analysis for spotted and in-situ synthesized 
oligonucleotide microarray technologies. Both experimental questions and com-
putational aspects are addressed. Experimental issues discussed include the 
choice of an optimal number of probes per target and probe lengths and their in-
fluence on bias and random measurement noise, effects of different probe or sub-
strate modifications and laboratory protocols on signal specificity and sensitivity. 
Computational topics include practical considerations and a case study in probe-
sequence design, the exploitation of probing multiple target regions, and the 
modelling of probe-sequence specific signals. The current state-of-the-art of the 
field is examined, and principled thermodynamic probe-design criteria are pro-
posed that are based on the free energy of the probe-target complex at the hy-
bridization temperature, rather than its melting temperature. Lastly, we note and 
discuss an emerging trend in recent computational work towards a focus on sig-
nal interpretation rather than probe-sequence design. 

 



DNA microarray technology is pervading many aspects of the life-sciences.  From 
humble beginnings, detecting the expression of a few tens of genes, entire eukaryotic 
genomes can now be interrogated (Schena et al., 1995; Bertone et al., 2004).  While 
the technology can be used for a variety of applications (Hanlon and Lieb, 2004; 
MacAlpine and Bell, 2005; Pinkel and Albertson, 2005), its main use is still in gene 
transcript expression profiling.  Often, microarrays are used to screen for genes in-
volved in a particular biological process of interest; however, larger datasets of com-
prehensive transcript coverage measured under a variety of conditions have 
considerable potential for much wider, systems-level analysis, e.g., via the detection 
of co-regulated groups of genes (Saidi et al., 2004; Lee and Batzoglou, 2003; Ihmels 
et al., 2002; Ihmels et al., 2004).  Sensitive pattern-detection tools require particularly 
accurate data so that biologically meaningful signatures can be distinguished from 
confounding experimental effects, which can only partly be removed at analysis-stage 
(Kreil and Russell, 2005).  At present, unfortunately, hybridization signal levels 
measured are not easily related to absolute quantities of target transcripts.  This chap-
ter outlines the advantages and challenges of using oligonucleotide-probes for tran-
script expression profiling, discusses typical considerations and practical aspects in 
probe-sequence design, and highlights recent developments in the modelling of hy-
bridization behaviour that are of relevance for probe design and the interpretation of 
hybridization signals.  Whilst recognising that there are many sources of bias and 
noise in microarray data, developing an understanding of probe hybridization behav-
iour will be instrumental in achieving a quantitative view of the transcriptome. 

The case for oligonucleotide-probes 
There are two types of common DNA microarray probes: oligonucleotides and dou-
ble-stranded amplicons (Schena et al., 1996; Johnston et al., 2004).  Amplicon probes 
have particularly high sensitivity and, for some applications, their relatively large tol-
erance to small transcript-sequence variations can be helpful – e.g., transparently tol-
erating naturally occurring polymorphisms.  This same property, however, makes 
amplicon-probes less well suited for the discrimination of very similar targets, such as 
alternative-splicing variants, or families of paralogous genes.  With all amplicon-
based probes, moreover, the technical problems associated with PCR-amplification of 
thousands of clones are not easily overcome (Hegde et al., 2000, and Burr et al., this 
volume).  Consequently, some laboratories report that only 66–79% of probes were 
not contaminated and matched their respective targets (Hager, this volume).  Never-
theless, probing species without a fully sequenced genome, comparing highly related 
strains, or exploiting specialized cDNA-libraries, indicate the use of amplicon arrays 
(Suchyta et al., 2003; Diatchenko et al., 1996). 

With the increased experimental control available with oligonucleotide-probes and 
because of the challenges of manufacturing amplicon-probes of uniform and validated 
quality, many modern microarray applications use synthesized oligonucleotide-
probes.  Either multiple shorter probes per target are employed, as with Affymetrix 
chips (Lockhart et al., 1996), or longer oligonucleotide-probes are used, typically 35–
70-mers (Kane et al., 2000; Hughes et al., 2001; Nuwaysir et al., 2002).  Oligonucleo-
tide-probes overcome many of the difficulties of amplicons and show increased target 
sequence discrimination (Duggan et al., 1999; Relogio et al., 2002).  Moreover, one 
can ensure uniform probe concentrations, hybridization affinities, and minimal cross-
hybridization.  Consequently, very clean arrays can be achieved. 



Considerations for oligonucleotide-probe design. 
Many issues affect probe design, no matter whether arrays are to be produced com-
mercially or in-house.  The number of probes per target and their lengths must be 
chosen first, and the following section discusses tradeoffs that must be made due to 
technical limitations of production platforms.  Additional complexities, deferred to 
later sections, include the discrimination of multiple splice-variants of a transcript, 
issues of target secondary-structure, and the detection of RNA degradation.  Even 
without considering these, thorough studies regarding optimal choice of probe length 
or the number of probes per target are difficult, and few systematic comparisons exist. 

Number of probes per target and probe lengths 
There are two properties of the microarray measurement process that one wishes to 
maximize for transcript expression profiling: 1) the sensitivity, a measure of how little 
is lost of the signal reflecting specific hybridization between the probe and its target; 
and 2) the specificity, a measure of how little non-specific hybridization there is of the 
probe with molecules other than its target.  At the same time, one aims to minimize 
two other properties of the measurement process: 1) the random signal variation or 
noise, often expressed as coefficient of variation (CV), the standard deviation divided 
by the mean of multiple measurements; and 2) the bias, the systematic deviation of 
the measurement from the true signal due to probe-specific or other confounding 
technical effects. 

Sensitivity generally increases with probe length since the binding-energy for longer 
probe-target hybrid complexes is typically higher; 60-mers, for example, detect tar-
gets with eightfold higher sensitivity than 25-mers (Chou et al., 2004).  The specific-
ity of very short probes decreases with diminishing probe length because of the 
increasing chance of a random match to non-target sequences.  On the other hand, the 
specificity of very long probes decreases with growing probe length because the 
chance that a fragment of the probe matches an unwanted target increases with probe 
length.  The fact that biological nucleotide sequences are not random further contrib-
utes to this because different targets can share domains of high sequence similarity. 

Noise can be reduced by increased binding-energy via greater probe length and by 
making multiple measurements per target – be that through replicate or multiple 
probes.  Bias of individual probes should ideally be measured or modelled and re-
moved.  The bias of a set of probes for a given target can also be reduced through the 
combination of multiple probes of random bias, where the average bias decreases with 
the number of probes. 

Although experimental comparisons are difficult because optimal hybridization proto-
cols differ for probes of different lengths and binding affinities, qualitative trends ob-
served for 25–500-mers (Fig. 1) suggested that, depending on how one weighs 
optimization criteria, probe lengths between 50 and 150 may yield a good compro-
mise (Fig. 2).  For the shorter probes, replicates from different arrays or multiple 
probes should be used to reduce noise, and probe bias compensated, e.g., by the com-
putational means discussed later. 

 



 

Figure 1: Noise and bias.   A) Noise (CV) reduces with probe length.   B) Bias de-
creases with increased probe lengths (see symbols in legend) and with larger numbers 
of probes per gene. Bias was assessed as the average deviation between the robust 
means of the signals of random probe subsets and the robust mean of the signals of 
the full probe set (Chou et al., 2004).   (Redrawn after Chou et al., .) 

 

 

Figure 2: Optimization by multiple criteria: three of the four criteria discussed are 
shown.  The fourth, sensitivity, increases monotonically with probe length over the 
studied range (Chou et al., 2004).   (Redrawn after Chou et al., .) 

 

A very different type of ‘specificity’ measure, indicative of detection performance for 
single-nucleotide polymorphisms (SNPs), is obtained in studies comparing hybridiza-
tion signals from ‘perfect match’ (PM) probes and ‘mismatch’ (MM) probes featuring 
a single-base mismatch (Relogio et al., 2002).  In transcript expression profiling, 
however, sensitivity to SNPs is detrimental because of natural sequence polymor-
phisms in samples. 

Microarray production and hybridization protocols 
Hybridization behaviour of probes, measurement sensitivity, and specificity strongly 
depend on microarray production and hybridization protocols.  The steric hindrance of 



the solid support to which probes are attached, e.g., reduces hybridization more than 
twofold and, together with electrostatic effects, may render the terminal bases close to 
the support effectively invisible (Shchepinov et al., 1997).  Terminal uncharged am-
phiphilic spacer groups with 30–60 carbon-carbon bonds provide a remedy.  Length 
40 seems optimal, as longer spacers reduce the effective concentration of the probe by 
allowing diffusion.  Thus creating sufficient space between substrate and probes to 
mitigate sterical and electrostatic effects on hybridization yet also limiting probe dif-
fusion, such optimal spacer groups could achieve a 150-fold increase in hybridization 
sensitivity while making the entire probe available for specific hybridization 
(Shchepinov et al., 1997). Slide substrate coatings with a ‘gel-like’ spacing effect 
provide an alternative, e.g., GE Healthcare CodeLink or FullMoonBioscience Pow-
erMatrix substrates (Ramakrishnan et al., 2002; Le Berre et al., 2003). 

Relevant hybridization protocol parameters include hybridization temperature and du-
ration, hybridization buffer composition and additives (such as formamide), and the 
stringency of washes.  In the manufacture of spotted arrays, other protocol parameters 
of relevance include spotting buffer and microarray slide substrate chemistries, probe 
concentrations, and ambient temperature and humidity (Kreil et al., 2003; Auburn et 
al., 2005).  The protocols employed should be validated for sensitivity and specificity, 
e.g., by spike-in experiments, which are also easily assessed visually, an efficiency 
factor in protocol-parameter screens.  Typical results reflect the confounding effects 
of experimental conditions on hybridization behaviour: False-colour hybridization 
images of a spotted probe (Supplement) showed the clear detection of a difference in 
transcript expression, yet a change in just the microarray manufacturing chemistry 
made the same probe hybridize non-specifically in both channels.  While not suitable 
for immediate visual assessment, an optimization of the detection sensitivity for dif-
ferential expression provides an alternative quantitative assay less dependent on a set 
of spike probes being representative of an array.  Multiple replicate hybridizations and 
the use of dye-swaps for multi-channel systems ensure that differential signals cannot 
occur by chance and that a maximization of the number of difference calls corre-
sponds to optimal hybridization conditions, once not-detected spots are correctly ac-
counted for (Kreil et al., in preparation). 

In order for the measurement process to be both sensitive and specific for, ideally, all 
the probes on the array, one requires probes of uniform hybridization properties at the 
reaction conditions employed.  This is the objective of probe-sequence design. 

Practical considerations in probe-sequence design, a 
case study 
Probe-sequence design is complex for a variety of reasons, ranging from trivial tech-
nical nuisances to difficult theoretical problems that are the subject of active research.  
The prediction of actively transcribed genome regions, for instance, is still far from 
exhaustive, and hence the mixture of target transcripts that need to be discriminated in 
a sample is not fully known.  Already a prediction of the properties of a candidate 
probe under competitive hybridization with a known mixture of different transcripts is 
a difficult thermodynamic modelling challenge.  As a consequence, more or less crude 
approximations and heuristics are often employed, with modelling replaced by se-
quence-similarity searches and alignments, and ad-hoc rules of thumb regarding probe 
sequence-complexity and secondary structure.  These simplified approaches, however, 
are typically not sufficiently reliable on their own and usually require experimental 



validation of candidate probes in a final probe-selection step.  Approaches exploiting 
the different hybridization kinetics of specific and non-specific binding to detect non-
specific probes are only applicable to probes for sufficiently highly expressed targets 
(Dai et al., 2002).  Comprehensive experimental validation is hence rarely performed 
for reasons of complexity and cost. 

While a plethora of probe-design software is available (cf. Supplement), it is clear that 
designs that are less crude approximations to proper thermodynamic modelling are 
better predictors of oligonucleotide hybridization performance (Luebke et al., 2003).  
The common limitations of readily available software can roughly be classified into 
the following categories: 

1. Limited validity of heuristics and approximations in lieu of proper thermody-
namic modelling; e.g., sequence-similarity or ‘consecutive matches’ to probe 
complements as indicative of cross-hybridization; or sequence palindromes as 
indicative of hairpin secondary-structure instead of proper thermodynamic hy-
bridization and folding models; 

2. Replacement of parameter optimization by (a) acceptance of any solution with 
parameters meeting specified thresholds; or (b) requiring users to fix the pa-
rameter for design runs; e.g., accepting any probe with binding-energy in a 
given range; or requiring users to specify both probe-length and energy 
thresholds rather than inferring one from the other; 

3. Lack of support for dealing with similarities in biological sequences and the 
consequential difficulty of designing specific probes for groups of similar se-
quences, e.g., alternative splice-forms or paralogous genes; 

4. Technical issues such as malfunctions or undocumented software require-
ments. 

This section does not attempt a comprehensive discussion but instead highlights typi-
cal consequences of problems encountered using the design of a genome-scale tran-
script array for Drosophila melanogaster (Kreil et al., in preparation) as a case study, 
covering: 

• Consequences of the choice of probe design software 

• Construction of a set of target transcript sequences 

• Choosing design parameters 

• Searching for ‘optimal’ probes 

• Post-processing, e.g., to account for under-prediction of transcripts from the 
genomic sequence 

Although critical at all phases of employment, technical issues are collected in the 
Supplement because of their often transient nature. 

Choice of software, and construction of the target transcript 
set 
OligoArray 2.1 (‘OA2’, http://berry.engin.umich.edu/oligoarray2_1/) uses 
relatively few heuristic shortcuts (Rouillard et al., 2003): Cross-hybridization and 
self-folding are assessed using full two-state thermodynamic models employing the 
mfold algorithm, allowing for mismatches, bulges, loops, and hairpins (SantaLucia, 



1998; Zuker, 2003).  Otherwise, OA2 is comparable to many other probe-design tools 
in using BLAST sequence-similarity search (Altschul et al., 1997) together with heu-
ristics to screen non-target transcripts for potential cross-hybridization.  Access to the 
software source-code (unpublished) allowed the verification of the implementation 
and was most valuable for dealing with technical issues as they emerged.  The sources 
of a revised version will be published later this year (J.-M. Rouillard, pers.comm., 
2005). 

As OA2 has no concept of ‘related’ sequences and treats all predicted stable hybridi-
zations to non-target transcripts equally, duplicate and very similar sequences had to 
be removed in the construction of a ‘non-redundant’ set of target transcript sequences, 
using tools like nrdb90 or CD-HI (Holm and Sander, 1998; Li et al., 2001).  For 
compatibility to common labelling methods, design was restricted to the 1500 base 3’-
regions of targets and sense probes had to be built for the labelled (anti-sense) targets 
derived by reverse transcription from the (sense) mRNAs in samples (Marko et al., 
2005). 

Choice of design parameters, search for ‘optimal’ p robes 
OA2 execution parameters provide thresholds for the acceptance of probe candidates.  
The probe candidate closest to the 3’-terminal of the target sequence that passes all 
criteria is selected: probe length and probe-target melting-temperature Tm within given 
ranges, no stable probe secondary-structure (self-folding), GC content in range (which 
we did not restrict), no tandem repeats, and a minimal number of predicted stably hy-
bridizing non-target transcripts.  Accepted probe lengths were set to 65–69 as pilot 
experiments had demonstrated a good compromise between sensitivity and specificity 
with the protocols employed in our laboratory. 

OA2 default parameters for 45–47-mers permit 85°C≤Tm≤90°C, tolerate stable cross-
hybridization only for Tx<65°C, and stable probe secondary-structure for Ts<65°C.  
Examining the Tm values of all candidate probes in the 1500 base 3'-regions of target 
sequences yielded a set of Tm values per sequence.  Some target sequences had ex-
treme probe-candidate Tm distributions, with min(Q3(Tm))=76.3 and 
max(Q1(Tms))=97; Q1/3 denoting the first and third quartiles, respectively.  On the 
other hand, most targets had melting-temperatures in a common range, with 
(Q1,median,Q3)(median(Tm))=(87.0,89.0,90.5).  This was well matched to the sug-
gested tolerated Tm interval of 85–90°C: More than 90% of target sequences were 
covered with at least 25% of candidate probes per target having a Tm in this interval.  
For our target set, the optimal 5°C range maximizing coverage for 45–47-mers was 
86.6–91.6°C. 

In contrast, for 65–69-mers, the extremes were min(Q3(Tms))=81.5 and 
max(Q1(Tms))=100.6, while (Q1,median,Q3)(median(Tms))=(91.7,93.3,94.7).  Less 
than half the target sequences, however, were covered with at least 25% of candidate 
probes having a Tm in the default interval 85–90°C, severely reducing the number of 
probe candidates that could be considered.  Shifting the 5°C window to 90.6–95.6°C 
(a 5.6°C offset to OA2 defaults), however, could achieve coverage of 94% of all tar-
get sequences with at least 25% of candidate probes in range (Fig. 3).  Thus, for most 
target sequences a large number of probe candidates could be considered, increasing 
the likelihood that a specific probe with no cross-hybridization could be found.  For a 
small number of target sequences (6%), however, probe-design meeting these parame-
ter thresholds was difficult. 



 

 

Figure 3: Choice of parameter thresholds for oligonucleotide-probe design.  A design 
parameter selection well-matched to the parameter distribution in the probe candidates 
extends the search space of acceptable candidates, increasing the likelihood that spe-
cific probes can be found.  The right panel considers 65–69-mers in comparison to 
45–47-mer probes (the OA2 default probe-lengths) in the left panel.  The distribution 
of the median Tm of all possible candidate probes per target is shown.  The median of 
these for the set of target transcripts is marked by a black bar; the whiskers indicate 
first and third quartiles.  The OA2 default Tm window is reasonable for 45–47-mers 
but needs adjustment for different probe lengths.  While a 5°C window can be found 
to suit most targets, there typically are targets with unusual properties requiring reruns 



with different parameter sets.  This is illustrated for the most extreme cases: 75% of 
probe candidates for these transcripts have a Tm beyond the values indicated by the 
dotted-lines.  (Predicted Tm values as calculated by OA2.) 

 

The Tx and Ts thresholds were conservatively adjusted by 4°C from 65°C to 69°C, 
leaving a margin of 1.6°C for the effect of Tm overestimation at large temperatures 
(Rouillard et al., 2003), also matching the observed shift of the ‘optimal’ Tm window.  
Targets with no satisfactory probes were rerun with increasingly relaxed parameters. 

Employment and post-processing 
The design-runs for the parameter sets considered were executed on a distributed col-
lection of computers using Grid Engine (http://gridengine.sunsource.net/).  
Accounting for possible under-predication of transcripts from the genomic sequence, 
all OA2-selected probes were screened to exclude predicted stable hybridizations to 
any genomic DNA sequence (BLAST search of both genomic sequence strands plus 
standard OA2 heuristics and mfold thermodynamic calculation).  To partly compen-
sate the lack of support for transcript groups, when no specific probe was found, 
probes only predicted to cross-hybridize to alternative splice-forms of the target gene 
were chosen over probes with predicted cross-hybridization to transcripts of different 
genes. 

Conclusion 
It is noteworthy that there are no tools presently capable of automatically selecting a 
uniform range of thermodynamic properties allowing high specificity for most probes 
and delivering a probe set appropriately dealing with families of paralogous genes and 
alternative-splicing variants.  Combining results from multiple OA2-runs with care-
fully selected parameters, however, a ‘state-of-the-art’ probe set could be obtained, 
with probes for more than 90% of all targets meeting all design criteria.  For about 4% 
of targets, however, probes were predicted to cross-hybridize with transcripts from 
non-target genes, most likely orthologues.  Support for orthologues and splice-forms, 
and more automated parameter selection could considerably simplify employment.  
Lastly, while OA2 gives very little control of probe placement, this property is a par-
ticular strength of oligonucleotide arrays. 

Locations of probe-sequence target regions, discrimi-
nation of highly similar targets 
The ability of probing specific target regions can be exploited, e.g., to test for RNA 
integrity.  Probe-location dependent trends in signals from multiple probes for an 
abundant transcript indicate RNA degradation.  While bacterial RNA is degraded in 
3’-to-5’ direction, eukaryotic RNA is degraded by exonuclease digestion from the 5’-
end (Brown, 2002).  Transcript secondary structure may, however, hide particular tar-
get regions and hence affect probe hybridization signal (Ratushna et al., 2005), a 
complication that should be considered (but usually isn’t) in probe design and signal 
interpretation. 

In contrast to the 3’-bias of many commonly used labelling methods, modern proto-
cols can provide labelled full-length targets (Castle et al., 2003; Johnson et al., 2003).  
Calculated placement of probes then allows the discrimination of highly similar tar-



gets, like families of paralogous genes or alternative splice-forms.  The latter are of 
particular interest in the quest for understanding complex eukaryotes.  Alternative 
splice-forms are predicted for ~50% of all human genes, comprising a complex vari-
ety of transcriptional constructs hard to distinguish with microarrays (Lander et al., 
2001; Shai, 2004).  While exon-junction spanning probes (Kane et al., 2000) can im-
prove discrimination (Fig. 4) they can also cross-hybridize with alternative splice-
forms due to construction constraints.  Moreover, 5% of human splice acceptor sites 
have NAGNAG motifs (N being a SNP), parts of which are received by some splice-
forms (Hiller et al., 2004).  Probes for expression analysis must tolerate both this al-
ternative motif inclusion and the motif degeneracy while being highly specific to the 
target splice-form queried. 

 

 

Figure 4: Exon and exon-junction probes.  Black bars indicate probe locations.  Direct 
measurement of splice-variant 2 requires exon-junction probes. 

 

Clearly, signal interpretation constitutes a critical and challenging aspect of these mi-
croarray applications, which is reflected in a wide range of approaches.  Adding gene-
structure specific effects per splice-form in a linear model of effects (Li and Wong, 
2001), specific splice-forms could be discriminated for genes of known structure 
(Wang et al., 2003).  GenASAP could deduce splicing events from exon and exon-
junction probe data by fitting a Bayesian generative linear model for single-cassette 
exon inclusion/exclusion using structured variational expectation-maximization (Shai, 
2004).  Comparing samples against their mixture and introducing (unknown) probe- 
and splice-form-specific affinities in a linear model of effects (Li and Wong, 2001),  
differences in splicing patterns between samples could be detected (Le et al., 2004).  
Present approaches to analysing such complex datasets do not explicitly model cross-
hybridization.  With the severity of such probe-level effects, however, further pro-
gress is expected from including individual probe characteristics into the modelling 
process.  The subsequent sections give an overview of our current state-of-the-art un-
derstanding of probe behaviour. 

In-situ  synthesis vs  deposition of pre-synthesized oli-
gonucleotides 
Both robotic deposition of pre-synthesized oligonucleotides on arrays (Auburn et al., 
2005) and in-situ synthesis of probes each have their advantages and disadvantages.  
Using fixed-mask lithography, an approach pioneered by Affymetrix (Lockhart et al., 
1996), oligonucleotide synthesis is achieved by repeated cycles of base additions with 
different masks for light-directed deprotection of terminal hydroxyl groups (Pirrung, 



2002).  The typical coupling efficiency of only 92–94% per step (McGall et al., 
1997), however, limits the technology to short probes (Fig. 5), although improved 
photosensitive groups exist (Pirrung, 2000).  Typically, 11–14 probes of 25 bases are 
used per target for transcript expression profiling.  Fixed mask lithography produces 
~1,300,000 probes/chip, making this the technology of choice for extremely high 
numbers of probes.  On the other hand, while well-suited for industrial production of 
standard arrays, making small numbers of specialized arrays is uneconomical. 

Very high density arrays can flexibly be produced by in-situ synthesis via digital mi-
cro-mirror device (DMD) lithography, yielding ~400,000 features/array.  Since im-
provements in photosensitive deprotection efficiencies from 95% to 98% giving 
stepwise synthesis yields of up to 96% (Singh-Gasson et al., 1999; Nuwaysir et al., 
2002; Buhler et al., 2004), arrays for transcript expression profiling are offered with 
60-mer probes that typically employ 5 or more probes per target (cf. Nimblegen ar-
rays, Scacheri et al., this volume).  In-situ synthesis by ink-jet deposition can flexibly 
produce high density arrays of ~40,000 spots of excellent spot morphologies.  Cou-
pling efficiencies of up to 98% allow higher-yield synthesis of 60-mer probes 
(Hughes et al., 2001; Lausted et al., 2004).  Typically one probe is used per target for 
transcript expression profiling. 

As an alternative to in-situ synthesis, pre-synthesized oligonucleotide-probes can be 
spotted at high density, giving arrays of ~40,000 probes.  Compared to in-situ synthe-
sis, pre-synthesized probes can be produced at much higher purity and yield.  
A coupling efficiency of >99% can be achieved in synthesis, and purification of the 
final product is possible by one or multiple rounds of reverse-phase high-performance 
liquid-chromatography (RP-HPLC), which works well for shorter oligonucleotides, 
and/or polyacrylamide gel electrophoresis (PAGE).  Typically, 50–70-mers are used 
for transcript expression profiling, with one probe per target.  Spotted arrays also al-
low more complex designs in which probes for multiple targets are spotted as com-
posite probes for multiplexed target measurements or normalization purposes 
(Shmulevich et al., 2003; Yang et al., 2002). 

 



 

Figure 5: Response of synthesis yields to varying coupling efficiencies for oligonu-
cleotides of different lengths.  Photolithographic and ink-jet synthesis typically 
achieve efficiencies of 94–96% and ~97% per step, respectively.  Pre-synthesized nu-
cleotides are made with efficiencies >99%, and subsequent purification steps are fea-
sible, of particular relevance for longer oligonucleotide-probes.  A single round of 
RP-HPLC obtains 90–97% of full-length product, PAGE yields 95–99% purity. 

 

Since probes containing mixtures of prematurely terminated oligonucleotides reduce 
measurement specificity at optimal hybridization conditions (Jobs et al., 2002) and 
purification steps are expensive, many laboratories spot probes with 5’-terminal 
amino-groups onto aldehyde substrates.  Only full-length probes bind to the substrate 
covalently while prematurely terminated oligonucleotides are washed off.  Increased 
probe purity extremely simplifies thermodynamic modelling. 

Thermodynamic modelling of microarray probe hy-
bridization 

Microarray specific effects 
While the thermodynamics of nucleic acid hybridization in solution has long been an 
area of extensive research (Dimitrov and Zuker, 2004; SantaLucia and Hicks, 2004), 
only the recent popularization of microarrays has brought the more convoluted issue 



of hybridization behaviour of oligonucleotides tethered to a solid support into the fo-
cus of current research.  The solid support can interfere with target molecule binding 
sterically and chemically.  Even with gel-like substrate coatings or spacers attached to 
probes reducing this effect, it was surprising that models for hybridization behaviour 
in solution could directly be applied for pre-synthesized probes attached to a gel sub-
strate, once a linear correction was applied to thermodynamic parameters (Table 1); 
this even unaffected by fluorescent end-labels (Fotin et al., 1998). 

 

 

Table 1: Linear corrections to thermodynamic parameters for oligonucleotide-probes 
attached to a solid support.  The first alternative formula for 

�
G0 gives the relation-

ship published in the original paper by Fotin et al. (1998), where the slope has been 
assumed to be one.  The next line shows regression results without this constraint, as 
published.  This does not, however, fit the data in Table 3 of the Fotin et al. paper 
(J. SantaLucia, Jr., pers.comm., 2005).  The formula labelled ‘recalculated’ was ob-
tained by linear least-squares regression from the original table data (Fotin et al., 
1998), while the last line shows the correction suggested by HyTher 
(http://ozone2.chem.wayne.edu/). 

 

The situation for probes from manufacturing processes giving mixtures of prema-
turely terminated oligonucleotides is more complicated.  For a long time, therefore, 
probe-sequence specific variation in signal intensity from such arrays was not under-
stood.  Sequence-specific probe bias, particularly strong for short sequences, was re-
duced by combining measurements from multiple probes, yet without exploiting 
probe-sequence information (Li and Wong, 2001; Bolstad et al., 2003).  Recently, 
however, empirical models of sequence-specific binding with position-specific 
weights have been introduced: The predicted contributions of probe regions to the 
overall binding strength are attenuated depending on their positions along the probe-
sequence. 

For data from Affymetrix chips, Zhang et al. (2003) successfully fit the signal intensi-
ties of a particular probe i for a target j as sum of contributions from specific and non-
specific binding to the probe plus a global background constant B: 

. 



Nj is the number or target molecules, N* the number of molecules binding non-
specifically to (all) probes.  For a probe-sequence (b1,b2,…,bk,…,b25), the free-energy 

terms for specific and non-specific binding,  and 

, are parameterized by empirical base-pair stacking energies ε /ε * and position-dependent weights ω k/ ω k
*.  This simple model fitted probe signal 

levels well, removing probe-sequence specific bias, apparently of particular relevance 
for low-intensity signals.  The probe centre gave the largest contribution to binding 
(Fig. 6).  The empirical base-pair stacking energies, however, can vary considerably 
between different chip designs (data from 
http://odin.mdacc.tmc.edu/~zhangli/PerfectMatch/), reflecting the empirical 
nature of the model. 

 

 

Figure 6: The position-specific weights in a position-dependent nearest-neighbour 
model.  The centre part of an Affymetrix probe gives the strongest contribution to 
binding.  The curve for the mismatch probes (MM) reflects destabilization from the 
central mismatch base.   (Redrawn after Zhang et al., 2003.) 

 

Naef and Magnasco (2003) use position-dependent affinities Ak in modelling probe-
specific signal intensities for Affymetrix chips, 

, 

giving position-dependent scores for each of the four bases.  Figure 7A shows the dis-
tinct base-specific profiles.  The destabilizing effects of in-sequence labels indicate 
possible advantages of labelling target sequences outside the probe binding regions.  
Overall, probe centres contributed most to overall binding. 

GC-RMA (www.bioconductor.org) adopted the Naef and Magnasco model and in 
combination with data from non-specific hybridization predicts probe signals cor-
rected for background and bias.  Affinities obtained for G and T (Fig. 7B) showed 
somewhat different behaviour to that observed earlier, as can be expected for an em-
pirical model, yet the predominant contribution to binding was again from the centres 
of the probes (Naef and Magnasco, 2003; Wu et al., 2003). 



 

 

Figure 7: Position-specific affinities.   (A) The position-specific affinities for each of 
the four bases from the model of Naef and Magnasco (2003).  A/T and C/G asymme-
tries are due to labelled pyrimidines U/C impeding binding for A/G.  Positions are in 
synthesis order, with 1 denoting the 3’-terminal attached to the chip.  (Redrawn from 
Naef and Magnasco, 2003.)   (B) The same model parameters but as obtained by Wu 
et al.(Wu et al., 2003) Note the differences for G/T in comparison with panel (A).  
(Redrawn from Wu et al., 2003.) 

 

Common to all these approaches is the apparent attenuated influence of terminal 
probe regions.  For the improvement of microarray manufacture and/or signal model-
ling, one wonders what could be its physical cause.  At the 5’-end, one may well see 
the result of diminishing synthesis-yield through premature termination (Naef and 
Magnasco, 2003), while the reduced effect of bases in the 3’-terminal region could be 
due to steric hindrance of the solid support or overly dense population by short oli-
gonucleotides (J. SantaLucia, Jr., pers.comm., 2005). 

Models for hybridization in solution 
Even predicting hybridization in solution is a very complex modelling problem that is 
an area of active research (Dimitrov and Zuker, 2004; SantaLucia and Hicks, 2004).  
A hybridized complex or a folded structure actually assembles cooperatively in three-
dimensional space, dynamically interacting with multiple other nucleic acid molecules 
and smaller molecules in solution as well as the solvent itself.  In dependence on the 
temperature, what nucleic acids are present and at what concentrations, and the con-
centrations of salt-ions and other buffer components (like formamide), the nucleic ac-
ids can form a variety of heterogeneous complexes while at the same time folding 
within themselves.  Therefore, to infer the concentration of a particular target tran-
script from microarray probe hybridization intensity, a fairly detailed understanding of 
the binding behaviour of the probe and its potential binding partners is required.  To 
make modelling tractable, several approximations are necessary.  A focus on secon-
dary-structure elements is justified because tertiary structure is a much weaker, sec-
ond-order effect.  The strong Watson-Crick interactions further allow the ‘discrete 
pairing approximation’: positions in a sequence are either paired or not, rendering 
structure prediction suitable for dynamic-programming algorithms, which have 



brought structure prediction for nucleic acids of up to 10,000 bases within reach for 
modern desktop computers (SantaLucia and Hicks, 2004). 

The most common additional approximation in predicting microarray probe hybridi-
zation is looking at only one or two molecules at a time.  The calculations for the hy-
bridization of two molecules are typically much simplified further by assuming a 
‘two-state model’, where the two molecules are either in a ‘bound state’, or not.  To 
model the properties of the binding process under the two-state approximation, only 
the differences of thermodynamic parameters between the two states need to be calcu-
lated.  For such computations, corresponding rules have been derived from the meas-
urement of thermodynamic properties of selected nucleotides with purposefully 
designed sequences and structures, which contained basic reoccurring motifs 
(SantaLucia, 1998).  An important part of this rule-set is formed by the Unified Wat-
son-Crick Base-Pair Nearest-Neighbour parameters obtained by multiple-linear re-
gression of measurements from several laboratories (SantaLucia, 1998) used by most 
microarray probe-design tools.  State-of-the-art algorithms for the prediction of fold-
ing or hybridization structures of minimal and near-minimal energy use these parame-
ters together with the corresponding rule-set for more complicated structural motifs 
like mismatched pairs, bulges, hairpins and various loops, and dangling ends 
(SantaLucia, 1998).  Tools such as mfold (Zuker, 2003), HyTher 
(http://ozone2.chem.wayne.edu/), and ViennaRNA (Hofacker, 2003) can more 
accurately assess regions of non-target transcripts that are suspected of non-specific 
hybridization to a probe.  Traditionally, these regions are selected by sequence-
similarity and heuristics, however, the development of tools that can identify regions 
in a longer target DNA that will hybridize with a shorter probe by direct thermody-
namic calculation (SantaLucia and Hicks, 2004) will soon make this inaccurate heu-
ristic approximation unnecessary (M. Zuker, pers.comm., 2004). 

Importantly, the most recent advances in thermodynamic computation now go beyond 
two-state models in the prediction of hybridization behaviour (Fig. 8). 

 



 

Figure 8: Multi-state coupled equilibria.  A more realistic model allows much more 
accurate predictions of hybridization behaviour (Dimitrov and Zuker, 2004; Santa-
Lucia and Hicks, 2004; Markham and Zuker, 2005).   (Redrawn after SantaLucia and 
Hicks, 2004.) 

 

Again, the same thermodynamic rule-set is used, but care has to be taken in order to 
avoid over-counting microstates: Although the experimental setup for the determina-
tion of the rule-set has been designed to minimize this effect, the parameters measured 
for the two-state model are for two effective states (‘bound’ and ‘unbound’), each of 
which is actually a combination of multiple microstates.  DNA Software’s commer-
cial OMP products account for this (SantaLucia and Hicks, 2004) and can provide 
correct multi-state modelling allowing multiple folding and binding events to be con-
sidered, including multiple simultaneous interactions per molecule.  The improve-
ments achievable by moving beyond two-state models can also be seen in DINAMelt, 
which for two molecules A and B models self-folding Aself and Bself, self-binding A-A 
and B-B, as well as hetero-duplex formation A-B (Dimitrov and Zuker, 2004; Mark-
ham and Zuker, 2005).  DINAMelt calculates full partition sums (i.e., accounting for 
all possible microstates), also taking care to avoid over-counting (N. Markham, 
pers.comm., 2005).  The multiple folding and binding events are modelled in competi-
tion to one another, giving temperature-dependent yields for each effective state.  



While these methods are currently too slow to be used as primary screens of oligonu-
cleotide-probe candidates during microarray design, they allow much more sophisti-
cated evaluations of probe-sets. 

Thermodynamic probe-design criteria 
When aiming for uniform probe characteristics across a microarray, many probe-
designs aim for uniform melting-temperatures Tm.  These alone, however, only give 
information about the probes’ behaviour at their respective melting-temperatures.  
Probes with the same Tm can behave quite differently at a reaction temperature 
Thyb<Tm.  For a given reaction temperature Thyb, aiming for similar free-energies at Thyb 
would hence actually result in more uniform hybridization (J. SantaLucia, Jr., 
pers.comm., 2005).  This can be improved on even further by accounting for competi-
tive hybridization and actually calculating, for a target transcript, what proportion of 
molecules will be bound to its probe at Thyb, aiming for uniformity across probes. 

In screening probes, designs typically aim to avoid secondary structure.  Clearly, 
strong secondary structure may render a probe inaccessible for its target.  On the other 
hand, exploiting competitive hybridization, secondary structure can contribute much 
to the specific recognition of a probe’s target.  This is actually exploited by other ex-
perimental techniques like molecular beacons (Bonnet et al., 1999).  Using thermody-
namic models for competitive hybridization, one can actually employ probe 
secondary-structure to adjust the level of specificity in target binding to that required 
(M. Zuker, pers.comm., 2005), e.g., highest for the discrimination of SNPs and highly 
similar targets, lower for transcript profiling transparently allowing for polymor-
phisms. 

Outlook 
With the increasing understanding of hybridization on microarrays, for many future 
microarray applications, the issue of probe design will yield to the task of probe-
signal interpretation.  Increasingly, modern methods leave little freedom in probe se-
lection because probes have to target a very well defined region, e.g., in probing par-
ticular gene regions to elucidate regulatory binding or splicing events.  Many of these 
probes will show cross-hybridization or strong secondary structure, and probe-sets 
will display a wide spectrum of thermodynamic properties.  To make the most of such 
data, a combination of experimental advances and sophisticated modelling will be in-
strumental.  Repeated measurements under different hybridization conditions can, 
e.g., discriminate specific from non-specific signal by exploiting hybridization kinet-
ics (Dai et al., 2002). 

A further advance in quantitative microarray analysis has recently come with algo-
rithms directly motivated by physical models.  Application of the most elementary 
representation of surface adsorption, the Langmuir isotherm (Atkins and de Paula, 
2004), could account for the nonlinearities observed at high signal intensity due to 
saturation of the probe with target molecules (Hekstra et al., 2003) – not to be con-
fused with saturation effects in the scanning of fluorescent images.  Combination of 
such a Langmuir adsorption model with thermodynamic free-energy calculations was 
very successful, however, despite the significant improvements seen, systematic 
variation was still detectable in the data, highlighting the need for further studies 
(Held et al., 2003). 



The measurement process on microarrays is, over time, increasingly better understood 
and hence modelled.  This correspondingly gives data that better reflect the true abun-
dances of transcripts in samples, giving better detection characteristics in screens of 
samples for biological differences and providing a prerequisite for more sophisticated 
work in computational biology.  While, overall, a lot of progress has been achieved, 
quantitative microarray analysis remains a challenging and active field of research. 

Supplement 
Further information is available at www.flychip.org.uk/MethEnz2005/. 
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