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Abstract

Oligonucleotide probes are increasingly the method of choicadioy modern
DNA microarray applications. They provide higher target-gipity, probe se-
lection gives improved experimental control of hybridization prtige and tar-
getting of specific gene subsequences allows the bettemdiisation of highly
similar targets such as splice-variants or gene fagnibaly recently has there
been substantial progress in dealing with the complexitipsobe set design
and probe-specific signal interpretation. After a distusof advantages and
disadvantages of oligonucleotide probes in comparison to amplithis manu-
script therefore focusses on recent advances and remieyirapallenges in
probe design and computational data analysis for spotteid-aitd synthesized
oligonucleotide microarray technologies. Both experimentestijons and com-
putational aspects are addressed. Experimental issuassdidanclude the
choice of an optimal number of probes per target andeplengths and their in-
fluence on bias and random measurement noise, effedifenént probe or sub-
strate modifications and laboratory protocols on signaliipiey and sensitivity.
Computational topics include practical considerations arasa study in probe-
sequence design, the exploitation of probing multiple targaine, and the
modelling of probe-sequence specific signals. The custate-of-the-art of the
field is examined, and principled thermodynamic probe-desitgria are pro-
posed that are based on the free energy of the probedamngetex at the hy-
bridization temperature, rather than its melting termpee. Lastly, we note and
discuss an emerging trend in recent computational work teveafocus on sig-
nal interpretation rather than probe-sequence design.



DNA microarray technology is pervading many aspectsefité-sciences. From
humble beginnings, detecting the expression of a fewdfegsnes, entire eukaryotic
genomes can now be interrogated (Schetrad, 1995; Bertoneet al, 2004). While
the technology can be used for a variety of applicat{étanlon and Lieb, 2004;
MacAlpine and Bell, 2005; Pinkel and Albertson, 2005), its mamis still in gene
transcript expression profiling. Often, microarraysused to screen for genes in-
volved in a particular biological process of interéstyever, larger datasets of com-
prehensive transcript coverage measured under a varietypaitions have
considerable potential for much wider, systems-level aisb.g., viathe detection
of co-regulated groups of genes (Sa&itlal, 2004; Lee and Batzoglou, 2003; Inmels
et al, 2002; Ihmelst al, 2004). Sensitive pattern-detection tools require pdatigu
accurate data so that biologically meaningful signatcaesbe distinguished from
confounding experimental effects, which can only partlydmeoved at analysis-stage
(Kreil and Russell, 2005). At present, unfortunately, hybatdon signal levels
measured are not easily related to absolute quantittesget transcripts. This chap-
ter outlines the advantages and challenges of using olitparige-probes for tran-
script expression profiling, discusses typical considenatand practical aspects in
probe-sequence design, and highlights recent developmeahtsnimodelling of hy-
bridization behaviour that are of relevance for prolmgieand the interpretation of
hybridization signals. Whilst recognising that thereraamy sources of bias and
noise in microarray data, developing an understandingodsephybridization behav-
iour will be instrumental in achieving a quantitative viewvitod transcriptome.

The case for oligonucleotide-probes

There are two types of common DNA microarray probégooucleotides and dou-
ble-stranded amplicons (Scheetaal, 1996; Johnstost al, 2004). Amplicon probes
have particularly high sensitivity and, for some agtlans, their relatively large tol-
erance to small transcript-sequence variations canlptihe e.g, transparently tol-
erating naturally occurring polymorphisms. This same prgpeowever, makes
amplicon-probes less well suited for the discriminatd very similar targets, such as
alternative-splicing variants, or families of paralogousege With all amplicon-
based probes, moreover, the technical problems assbwidbeP CR-amplification of
thousands of clones are not easily overcome (Hegdg 2000, and Buret al, this
volume). Consequently, some laboratories report thigtG6—79% of probes were
not contaminated and matched their respective targetge(Hhis volume). Never-
theless, probing species without a fully sequenced germmmgaring highly related
strains, or exploiting specialized cDNA-libraries, irate the use of amplicon arrays
(Suchytaet al, 2003; Diatchenket al, 1996).

With the increased experimental control availabldwiigonucleotide-probes and
because of the challenges of manufacturing ampliconegrobuniform and validated
guality, many modern microarray applications use syntedsifigonucleotide-

probes. Either multiple shorter prolmes target are employed, as with Affymetrix
chips (Lockharet al, 1996), or longer oligonucleotide-probes are used, typiBaly
70-mers (Kanet al, 2000; Hughest al, 2001; Nuwaysiet al, 2002). Oligonucleo-
tide-probes overcome many of the difficulties of awguiis and show increased target
sequence discrimination (Dugganhal, 1999; Relogicet al, 2002). Moreover, one
can ensure uniform probe concentrations, hybridizationiiés, and minimal cross-
hybridization. Consequently, very clean arrays carcheged.



Considerations for oligonucleotide-probe design.

Many issues affect probe design, no matter whetheysaara to be produced com-
mercially or in-house. The number of prolpestarget and their lengths must be
chosen first, and the following section discusses tffsl¢hat must be made due to
technical limitations of production platforms. Additidsamplexities, deferred to
later sections, include the discrimination of multigfdice-variants of a transcript,
issues of target secondary-structure, and the detedtRNA degradation. Even
without considering these, thorough studies regarding optineade of probe length
or the number of probgxer target are difficult, and few systematic comparisonstexi

Number of probes per target and probe lengths

There are two properties of the microarray measurepreness that one wishes to
maximize for transcript expression profiling: 1) teensitivity a measure of how little
is lost of the signal reflecting specific hybridizatibetween the probe and its target;
and 2) thespecificity a measure of how little non-specific hybridizatioarthis of the
probe with molecules other than its target. At th@e time, one aims tainimize
two other properties of the measurement process: 1)ndemasignal variation or
noise often expressed as coefficient of variati@V), the standard deviation divided
by the mean of multiple measurements; and 2pthg the systematic deviation of
the measurement from the true signal due to probe-specifither confounding
technical effects.

Sensitivity generally increases with probe lengthesithe binding-energy for longer
probe-target hybrid complexes is typically higher; 60-mersexample, detect tar-
gets with eightfold higher sensitivity than 25-mers (Chobal, 2004). The specific-
ity of very short probes decreases with diminishing plebgth because of the
increasing chance of a random match to non-target sequeoese other hand, the
specificity of very long probes decreases with growing @iehgth because the
chance that a fragment of the probe matches an unwiantgd increases with probe
length. The fact that biological nucleotide sequeacesiot random further contrib-
utes to this because different targets can share donfdirghcsequence similarity.

Noise can be reduced by increased binding-endeggreater probe length and by
making multiple measuremermsr target — be that through replicate or multiple
probes. Bias of individual probes should ideally be measar modelled and re-
moved. The bias of a set of probes for a given ta@eilso be reduced through the
combination of multiple probes of random bias, whereatlerage bias decreases with
the number of probes.

Although experimental comparisons are difficult becayseral hybridization proto-
cols differ for probes of different lengths and bindifign@ies, qualitative trends ob-
served for 25-500-mers (Fig. 1) suggested that, depending on hove gy
optimization criteria, probe lengths between 50 and 150yiedy a good compro-
mise (Fig. 2). For the shorter probes, replicates fildfarent arrays or multiple
probes should be used to reduce noise, and probe bias cotedemga by the com-
putational means discussed later.
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Figure 1:Noise and bias. A) Noise (CV) reduces with probe leng®) Bias de-
creases with increased probe lengths (see symbolgandg and with larger numbers
of probesper gene. Bias was assessed as the average deviation iéteeebust
means of the signals of random praidsetand the robust mean of the signals of
thefull probe set (Choet al, 2004). (Redrawn after Chat al, .)
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Figure 2: Optimization by multiple criteria: three of the faunteria discussed are
shown. The fourth, sensitivity, increases monotonicaitia probe length over the
studied range (Choet al, 2004). (Redrawn after Chat al, .)

A very different type of ‘specificity’ measure, irditive of detection performance for
single-nucleotide polymorphisms (SNPs), is obtained in studienparing hybridiza-
tion signals from ‘perfect match’ (PM) probes and ‘mégam’ (MM) probes featuring
a single-base mismatch (Relogibal, 2002). In transcript expression profiling,
however, sensitivity to SNPs is detrimental becadisatural sequence polymor-
phisms in samples.

Microarray production and hybridization protocols

Hybridization behaviour of probes, measurement sensitiaitgl specificity strongly
depend on microarray production and hybridization protocbie steric hindrance of



the solid support to which probes are attackegl, reduces hybridization more than
twofold and, together with electrostatic effects, meyder the terminal bases close to
the support effectively invisible (Shchepinewal, 1997). Terminal uncharged am-
phiphilic spacer groups with 30—60 carbon-carbon bonds provig@edy. Length

40 seems optimal, as longer spacers reduce the effeotigentration of the probe by
allowing diffusion. Thus creating sufficient space betwsubstrate and probes to
mitigate sterical and electrostatic effects on hykation yet also limiting probe dif-
fusion, such optimal spacer groups could achieve a 150-folgaisernn hybridization
sensitivity while making the entire probe availabledpecific hybridization
(Shchepinowet al, 1997). Slide substrate coatings with a ‘gel-like’ spacirfgcef
provide an alternatives.g, GE Healthcare CodeLink or FullMoonBioscience Pow-
erMatrix substrates (Ramakrishnainal, 2002; Le Berrest al, 2003).

Relevant hybridization protocol parameters include hytatibn temperature and du-
ration, hybridization buffer composition and additiyesch as formamide), and the
stringency of washes. In the manufacture of spotteysyrother protocol parameters
of relevance include spotting buffer and microarray sidglestrate chemistries, probe
concentrations, and ambient temperature and humidityl (&ral, 2003; Auburret

al., 2005). The protocols employed should be validated fortaatysand specificity,
e.g, by spike-in experiments, which are also easily asgegsually, an efficiency
factor in protocol-parameter screens. Typical reseftsct the confounding effects
of experimental conditions on hybridization behaviowaisE-colour hybridization
images of a spotted probe (Supplement) showed the cleatidetef a difference in
transcript expression, yet a change in just the micagananufacturing chemistry
made the same probe hybridize non-specifically in bbémoels. While not suitable
for immediate visual assessment, an optimizationeftitection sensitivity for dif-
ferential expression provides an alternative quantitagayaless dependent on a set
of spike probes being representative of an array. iMelteplicate hybridizations and
the use of dye-swaps for multi-channel systems enbkatalifferential signals cannot
occur by chance and that a maximization of the numbeiffefence calls corre-
sponds to optimal hybridization conditions, once not-detespots are correctly ac-
counted for (Kreikt al, in preparation).

In order for the measurement process to be both senaitd specific for, ideallgll
the probes on the array, one requires probes of unifobmdization propertieat the
reaction conditions employedrhis is the objective of probe-sequence design.

Practical considerations in probe-sequence design, a
case study

Probe-sequence design is complex for a variety of nsasanging from trivial tech-
nical nuisances to difficult theoretical problems ta the subject of active research.
The prediction of actively transcribed genome regiforsinstance, is still far from
exhaustiveand hence the mixture of target transcripts that nebd thscriminated in
a sample is not fully known. Already a predictidritee properties of a candidate
probe under competitive hybridization with a known mixturditierent transcripts is
a difficult thermodynamic modelling challenge. As asequence, more or less crude
approximations and heuristics are often employed, wittiatfiag replaced by se-
guence-similarity searches and alignments,ahtiocrules of thumb regarding probe
sequence-complexity and secondary structure. These fs@th@ipproaches, however,
are typically not sufficiently reliable on their ovand usually require experimental



validation of candidate probes in a final probe-seladciep. Approaches exploiting
the different hybridization kinetics of specific andhrepecific binding to detect non-
specific probes are only applicable to probes for suffityenighly expressed targets
(Dai et al, 2002). Comprehensive experimental validation is hencey naeeformed
for reasons of complexity and cost.

While a plethora of probe-design software is availéfieSupplement), it is clear that
designs that are less crude approximations to proper thgnaumit modelling are
better predictors of oligonucleotide hybridization perfonoe(Luebkeet al, 2003).
The common limitations of readily available softwaes roughly be classified into
the following categories:

1. Limited validity of heuristics and approximatiomslieu of proper thermody-
namic modellinge.g, sequence-similarity or ‘consecutive matches’ to @rob
complements as indicative of cross-hybridization;emugnce palindromes as
indicative of hairpin secondary-structure instead of prégEmodynamic hy-
bridization and folding models;

2. Replacement of parameter optimization by (a) acceptahany solution with
parameters meeting specified thresholds; or (b) requirsers to fix the pa-
rameter for design runs;g, accepting any probe with binding-energy in a
given range; or requiring users to specify both probe-leagihenergy
thresholds rather than inferring one from the other;

3. Lack of support for dealing with similarities in biologisEquences and the
consequential difficulty of designing specific probesdgmups of similar se-
guencese.g, alternative splice-forms or paralogous genes;

4. Technical issues such as malfunctions or undocumented sefteguire-
ments.

This section does not attempt a comprehensive discussiamsbedad highlightsypi-

cal consequences of problems encountered using the designdmerscale tran-
script array folDrosophila melanogastdKreil et al, in preparation) as a case study,
covering:

» Consequences of the choice of probe design software
» Construction of a set of target transcript sequences

* Choosing design parameters

» Searching for ‘optimal’ probes

* Post-processing.g, to account for under-prediction of transcripts from the
genomic sequence

Although critical at all phases of employment, techingsues are collected in the
Supplement because of their often transient nature.

Choice of software, and construction of the target transcript
set

OligoArray 2.1 ('OA2’,http: // berry. engi n. umi ch. edu/ ol i goarray2_1/) uses
relatively few heuristic shortcuts (Rouillaed al, 2003): Cross-hybridization and
self-folding are assessed using full two-state thermadimenodels employing the
nfol d algorithm, allowing for mismatches, bulges, loops, antpive (Santalucia,



1998; Zuker, 2003). Otherwise, OA2 is comparable to many otbbeatesign tools
in using BLAST sequence-similarity search (Altscaual, 1997) together with heu-
ristics to screen non-target transcripts for potentas-hybridization. Access to the
software source-code (unpublished) allowed the verificatidhe implementation

and was most valuable for dealing with technical issuéisegsemerged. The sources
of a revised version will be published later this yeaMJRouillard, pers.comm.
2005).

As OA2 has no concept of ‘related’ sequences and tritgiedicted stable hybridi-
zations to non-target transcripts equally, duplicate angsierilar sequences had to
be removed in the construction of a ‘non-redundant’ S&trget transcript sequences,
using tools likenr db90 or CD- HI (Holm and Sander, 1998; kt al, 2001). For
compatibility to common labelling methods, design wagiatet to the 1500 base 3-
regions of targets and sense probes had to be builiddabelled (anti-sense) targets
derived by reverse transcription from the (sense) mRiNAamples (Market al,
2005).

Choice of design parameters, search for ‘optimal’ p robes

OA2 execution parameters provide thresholds for the acuapta probe candidates.
The probe candidate closest to the 3’-terminal ofdhget sequence that passes all
criteria is selected: probe length and probe-targetmgetemperaturé,, within given
ranges, no stable probe secondary-structure (self-foJdB@)content in range (which
we did not restrict), no tandem repeats, and a minionaber of predicted stably hy-
bridizing non-target transcripts. Accepted probe lengée set to 65-69 as pilot
experiments had demonstrated a good compromise beteesitivgty and specificity
with the protocols employed in our laboratory.

OAZ2 default parameters for 45-47-mers permit 857390°C, tolerate stable cross-
hybridization only forT,<65°C, and stable probe secondary-structur@fs5°C.
Examining theT,, values of all candidate probes in the 1500 base 3'-regidasget
sequences yielded a setlgfvaluesper sequence. Some target sequences had ex-
treme probe-candidafi, distributions, with min(Q3())=76.3 and
max(Q1(Tms))=97; Q1/3 denoting the first and third quartiespectively. On the
other hand, most targets had melting-temperatures in mcamange, with
(Q1,median,Q3)(mediamg))=(87.0,89.0,90.5). This was well matched to the sug-
gested tolerated, interval of 85—-90°C: More than 90% of target sequences were
covered with at least 25% of candidate prgiedarget having a8, in this interval.
For our target set, the optimal 5°C range maximizingecage for 45-47-mers was
86.6-91.6°C.

In contrast, for 65-69-mers, the extremes were min(Q3()E8%.5 and
max(Q1(Tms))=100.6, while (Q1,median,Q3)(median(Tms))=(91.3,98.7). Less
than half the target sequences, however, were covatiediweast 25% of candidate
probes having &, in the default interval 85-90°C, severely reducing the nuwbe
probe candidates that could be considered. Shifting thevsfd@w to 90.6-95.6°C
(a 5.6°C offset to OA2 defaults), however, could achiewe@ge of 94% of all tar-
get sequences with at least 25% of candidate probesge (&ig. 3). Thus, for most
target sequences a large number of probe candidates eotidohéidered, increasing
the likelihood that a specific probe with no cross-idiaation could be found. For a
small number of target sequences (6%), however, probgrdeseting these parame-
ter thresholds was difficult.
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Figure 3: Choice of parameter thresholds for oligonucleotide-padsegn. A design
parameter selection well-matched to the parameter distibin the probe candidates
extends the search space of acceptable candidategdmg the likelihood that spe-
cific probes can be found. The right panel considers 65-688-im comparison to
45-47-mer probes (the OA2 default probe-lengths) in the laélpd he distribution

of the media, of all possible candidate probesrtarget is shown. The median of
these for the set of target transcripts is marked bgekltdar; the whiskers indicate
first and third quartiles. The OA2 defaliilf window is reasonable for 45-47-mers
but needs adjustment for different probe lengths. WHgCawindow can be found

to suit most targets, there typically are targets withsual properties requiring reruns



with different parameter sets. This is illustratedtfee most extreme cases: 75% of
probe candidates for these transcripts halig laeyond the values indicated by the
dotted-lines. (Predictell, values as calculated by OA2.)

TheTx andTsthresholds were conservatively adjusted by 4°C from 66 €3tC,
leaving a margin of 1.6°C for the effectf overestimation at large temperatures
(Rouillard et al, 2003), also matching the observed shift of the ‘optifialvindow.
Targets with no satisfactory probes were rerun withemsingly relaxed parameters.

Employment and post-processing

The design-runs for the parameter sets considered wecated on a distributed col-
lection of computers using Grid Engire (p: / / gri dengi ne. sunsour ce. net /).
Accounting for possible under-predication of transcripisnfthe genomic sequence,
all OA2-selected probes were screened to exclude prediztble hybridizations to
any genomic DNA sequence (BLAST search of both genoegjuence strands plus
standard OA2 heuristics antlol d thermodynamic calculation). To partly compen-
sate the lack of support for transcript groups, when nofgppobbe was found,
probes only predicted to cross-hybridize to alternativieesiibrms of the target gene
were chosen over probes with predicted cross-hybridizéb transcripts of different
genes.

Conclusion

It is noteworthy that there are no tools presenthabépof automatically selecting a
uniform range of thermodynamic properties allowing higécficity for most probes
and delivering a probe set appropriately dealing with fasndigparalogous genes and
alternative-splicing variants. Combining results fronitiple OA2-runs with care-
fully selected parameters, however, a ‘state-of-titigaeobe set could be obtained,
with probes for more than 90% of all targets meetingesign criteria. For about 4%
of targets, however, probes were predicted to crossdgwith transcripts from
non-target genes, most likely orthologues. Support thio@rgues and splice-forms,
and more automated parameter selection could considenadplyfg employment.
Lastly, while OA2 gives very little control of probeapement, this property is a par-
ticular strength of oligonucleotide arrays.

Locations of probe-sequence target regions, discrimi-
nation of highly similar targets

The ability of probing specific target regions can be dtgudpe.g, to test for RNA
integrity. Probe-location dependent trends in sigmals imultiple probes for an
abundant transcript indicate RNA degradation. While batt@NA is degraded in
3’-to-5’ direction, eukaryotic RNA is degraded by exonucletigestion from the 5'-
end (Brown, 2002). Transcript secondary structure mayehenyhide particular tar-
get regions and hence affect probe hybridization sigretu@Rnaet al, 2005), a
complication that should be considered (but usually igm’byrobe design and signal
interpretation.

In contrast to the 3’-bias of many commonly used labehmeghods, modern proto-
cols can provide labelled full-length targets (Castlal, 2003; Johnsoat al, 2003).
Calculated placement of probes then allows the digtaition of highly similar tar-



gets, like families of paralogous genes or alternativeesfdrms. The latter are of
particular interest in the quest for understanding comglégaryotes. Alternative
splice-forms are predicted for ~50% of all human gec@s\prising a complex vari-
ety of transcriptional constructs hard to distinguish wiibroarrays (Landeet al,
2001; Shai, 2004). While exon-junction spanning probes (Kaag 2000) can im-
prove discrimination (Fig. 4) they can also cross-hybeiavith alternative splice-
forms due to construction constraints. Moreover, 5%uofian splice acceptor sites
have NAGNAG motifs (N being a SNP), parts of which@eeived by some splice-
forms (Hiller et al, 2004). Probes for expression analysis must toleétethis al-
ternative motif inclusion and the motif degeneracy whéeng highly specific to the
target splice-form queried.

W 3 exon probes

Gene Structure

Splice variant 1

B M 2 junction probes

Splice variant 2 S 1 junction probe

Figure 4: Exon and exon-junction probes. Black bars indicatbgfocations. Direct
measurement of splice-variant 2 requires exon-junctiobgs.o

Clearly, signal interpretation constitutes a criteadl challenging aspect of these mi-
croarray applications, which is reflected in a widegeaof approaches. Adding gene-
structure specific effeciser splice-form in a linear model of effects (Li and Wong,
2001), specific splice-forms could be discriminated for gerfe&known structure
(Wanget al, 2003). GenASAP could deduce splicing events from exon and ex
junction probe data by fitting a Bayesian generative timeadel for single-cassette
exon inclusion/exclusion using structured variational exgieet-maximization (Shai,
2004). Comparing samples against their mixture and introgl@aitknown) probe-
and splice-form-specific affinities in a linear modékdfects (Li and Wong, 2001),
differences in splicing patterns between samples couttbterted (Leet al, 2004).
Present approaches to analysing such complex datasetsa@lictly model cross-
hybridization. With the severity of such probe-leviets, however, further pro-
gress is expected from including individual probe charatiegimto the modelling
process. The subsequent sections give an overview cofient state-of-the-art un-
derstanding of probe behaviour.

In-situ synthesis vs deposition of pre-synthesized oli-
gonucleotides

Both robotic deposition of pre-synthesized oligonucleot@earrays (Auburet al,
2005) andn-situ synthesis of probes each have their advantages auldigages.
Using fixed-mask lithography, an approach pioneered by Affyim@tockhartet al,
1996), oligonucleotide synthesis is achieved by repeatedsaytlease additions with
different masks for light-directed deprotection of terahihydroxyl groups (Pirrung,



2002). The typical coupling efficiency of only 92—94#4r step (McGallet al,

1997), however, limits the technology to short probeg. (), although improved
photosensitive groups exist (Pirrung, 2000). Typically, 11-14 profi@s bases are
usedpertarget for transcript expression profiling. Fixed masloliffaphy produces
~1,300,000 probes/chip, making this the technology of choicextoemely high
numbers of probes. On the other hand, while well-stiitechdustrial production of
standard arrays, making small numbers of specializedsaigayeconomical.

Very high density arrays can flexibly be producedrbgitu synthesivia digital mi-
cro-mirror device (DMD) lithography, yielding ~400,000 featumesy. Since im-
provements in photosensitive deprotection efficiencias 86% to 98% giving
stepwise synthesis yields of up to 96% (Singh-Gassah, 1999; Nuwaysiet al,
2002; Buhleret al, 2004), arrays for transcript expression profiling arereffevith
60-mer probes that typically employ 5 or more prgierdarget ¢f. Nimblegen ar-
rays, Scacheet al, this volume).In-situ synthesis by ink-jet deposition can flexibly
produce high density arrays of ~40,000 spots of excellent spphologies. Cou-
pling efficiencies of up to 98% allow higher-yield synthedi§0-mer probes
(Hugheset al, 2001; Laustee@t al, 2004). Typically one probe is uspdr target for
transcript expression profiling.

As an alternative to-situ synthesispre-synthesized oligonucleotide-probes can be
spotted at high density, giving arrays of ~40,000 probes. Ceohpain-situ synthe-
sis, pre-synthesized probes can be produced at much pigtitgrand yield.

A coupling efficiency of >99% can be achieved in synthesid, purification of the
final product is possible by one or multiple rounds of reegrhase high-performance
liquid-chromatography (RP-HPLC), which works well for dleooligonucleotides,
and/or polyacrylamide gel electrophoresis (PAGE). Talpic50—-70-mers are used
for transcript expression profiling, with one prqier target. Spotted arrays also al-
low more complex designs in which probes for multiplgets are spotted as com-
posite probes for multiplexed target measurements oral@ation purposes
(Shmulevichet al, 2003; Yanget al, 2002).
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Figure 5: Response of synthesis yields to varying coupling efficisnoieoligonu-
cleotides of different lengths. Photolithographic andj@t synthesis typically
achieve efficiencies of 94-96% and ~9p# step, respectively. Pre-synthesized nu-
cleotides are made with efficiencies >99%, and subsequdhitgiion steps are fea-
sible, of particular relevance for longer oligonucleotiebes. A single round of
RP-HPLC obtains 90-97% of full-length product, PAGE yields 95—-pa#fiby.

Since probes containing mixtures of prematurely termindtgdraucleotides reduce
measurement specificity at optimal hybridization ctinds (Jobst al, 2002) and
purification steps are expensive, many laboratories spoepmibh 5'-terminal
amino-groups onto aldehyde substrates. Only full-lengthgzrdind to the substrate
covalently while prematurely terminated oligonucleotidesvaashed off. Increased

probe purity extremely simplifies thermodynamic modejli

Thermodynamic modelling of microarray probe hy-

bridization

Microarray specific effects

While the thermodynamics of nucleic acid hybridizatimsolution has long been an
area of extensive research (Dimitrov and Zuker, 2004; Saai@kand Hicks, 2004),
only the recent popularization of microarrays has brotightnore convoluted issue



of hybridization behaviour of oligonucleotides tethered sola support into the fo-
cus of current research. The solid support can interfithetarget molecule binding
sterically and chemically. Even with gel-like substrabatings or spacers attached to
probes reducing this effect, it was surprising that modelkybridization behaviour

in solution could directly be applied for pre-synthediprobes attached to a gel sub-
strate, once a linear correction was applied to theymamic parameters (Table 1);
this even unaffected by fluorescent end-labels (Fettal, 1998).

Thermodynamic parameter Linear correction for microarrays
0 0o _ 0 9,
AH A[{arra‘y - A]{solution —24
0 0o _ 0
AD ADarray - A‘S’solution =70
AGY, original paper, slope constrained = 1 AGgrray = AGY | ion — 32
AGY, original paper, slope unconstrained | AGY,,, = LIAGY ) o, — 3.2 77
AGY, recalculated, slope unconstrained AGgrray =0.78AG | i, — 1.0
0 0  _q<r 0 ‘
AGY, HyTher AGmay = 0.85 AG ution — 2-33

Table 1:Linear corrections to thermodynamic parameters fgioalicleotide-probes
attached to a solid support. The first alternative fdanfor 4G° gives the relation-
ship published in the original paper by Fatiral (1998), where the slope has been
assumed to be one. The next line shows regressiotsredinout this constraint, as
published. This does not, however, fit the data in Tabletl3eoFotinet al paper

(J. SantaLucia, Jrpers.comm.2005). The formula labelled ‘recalculated’ was ob-
tained by linear least-squares regression from the origibkd data (Fotiet al,
1998), while the last line shows the correction suggestesgither

(nttp://ozone2. chem wayne. edu/ ).

The situation for probes from manufacturing processasgymixtures of prema-
turely terminated oligonucleotides is more complicateok. aHong time, therefore,
probe-sequence specific variation in signal intensaynfsuch arrays was not under-
stood. Sequence-specific probe bias, particularly strarghfort sequences, was re-
duced by combining measurements from multiple probes, yedwiexploiting
probe-sequence information (Li and Wong, 2001; Bolstaal, 2003). Recently,
however,empirical models of sequence-specific binding with position-specific
weights have been introduced: The predicted contributibpsobe regions to the
overall binding strength are attenuated depending on theilgmssalong the probe-
sequence.

For data from Affymetrix chips, Zharg al. (2003) successfully fit the signal intensi-
ties of a particular probefor a targej as sum of contributions from specific and non-
specific binding to the probe plus a global background conBtant
N, N*
I = J
T+ exp(Fij) + 14+ eXp(E;j)

+B



N; is the number or target molecul,the number of molecules binding non-
specifically to (all) probes. For a probe-sequeibgdy,... .k, ...,l»s), the free-energy
25

» o _Eijzzwkg(bk;bk+l)
terms for specific and non-specific bindir |, k=1 and

Zl‘

Efy =3 i< by bin) . y o

k=1 , are parameterlzed by empirical base-pair stackingyese
¢le and position-dependent weigligwy . This simple model fitted probe signal
levels well, removing probe-sequence specific bias, appaaplrticular relevance
for low-intensity signals. The probe centre gave &ngdst contribution to binding
(Fig. 6). The empirical base-pair stacking energiesidver, can vary considerably
between different chip designs (data from

htt p: // odi n. ndacc. t nt. edu/ ~zhangl i / Per f ect Mat ch/ ), reflecting the empirical
nature of the model.

Weight

5 10 15 20 25
Nucleotide position
Figure 6: The position-specific weights in a position-dependentaganeighbour
model. The centre part of an Affymetrix probe givesdinengest contribution to
binding. The curve for the mismatch probes (MM) reflelgstabilization from the
central mismatch base. (Redrawn after Zhetragj, 2003.)

Naef and Magnasco (2003) use position-dependent affidtissmodelling probe-
specific signal intensities for Affymetrix chips,

I 25
I e | = 37 Ayl
! (median [ij) J; ey

giving position-dependent scores for each of the four baSgsire 7A shows the dis-
tinct base-specific profiles. The destabilizing effexftm-sequence labels indicate
possible advantages of labelling target sequences outsigeotte binding regions.
Overall, probe centres contributed most to overall bigdi

GC-RMA (ww. bi oconduct or . or g) adopted the Naef and Magnasco model and in
combination with data from non-specific hybridizationgicés probe signals cor-
rected for background and bias. Affinities obtained fan@ T (Fig. 7B) showed
somewhat different behaviour to that observed eadgcan be expected for an em-
pirical model, yet the predominant contribution to bindivags again from the centres
of the probes (Naef and Magnasco, 2003;&Wval, 2003).
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Figure 7: Position-specific affinities. (A) The position-speciaffinities for each of
the four bases from the model of Naef and Magnasco (2003)and C/G asymme-
tries are due to labelled pyrimidines U/C impeding bindingAf6s. Positions are in
synthesis order, with 1 denoting the 3’-terminal attachéldeahip. (Redrawn from
Naef and Magnasco, 2003.) (B) The same model paranteiteas obtained by Wu
et alWueta- 2093 Note the differences for G/T in comparison with paAg! (
(Redrawn from Wtet al, 2003.)

Common to all these approaches is the apparent attennfietice of terminal
probe regions. For the improvement of microarray rfeasture and/or signal model-
ling, one wonders what could be its physical cause. é\b#end, one may well see
the result of diminishing synthesis-yield through prematenaination (Naef and
Magnasco, 2003), while the reduced effect of bases in ttexr@inal region could be
due to steric hindrance of the solid support or overly deapelation by short oli-
gonucleotides (J. SantalLucia, Jreys.comm.2005).

Models for hybridization in solution

Even predicting hybridization in solution is a very céempmodelling problem that is
an area of active research (Dimitrov and Zuker, 2004, akanta and Hicks, 2004).

A hybridized complex or a folded structure actually agdesicooperatively in three-
dimensional space, dynamically interacting with niplgt other nucleic acid molecules
and smaller molecules in solution as well as theesulitself. In dependence on the
temperature, what nucleic acids are present and ato@haéntrations, and the con-
centrations of salt-ions and other buffer componerks {irmamide), the nucleic ac-
ids can form a variety of heterogeneous complexes ahilee same time folding
within themselves. Therefore, to infer the concertratif a particular target tran-
script from microarray probe hybridization intensityaaly detailed understanding of
the binding behaviour of the probe and its potential bindingheestis required. To
make modelling tractable, several approximations are regesa focus on secon-
dary-structure elements is justified because tertiangire is a much weaker, sec-
ond-order effect. The strong Watson-Crick interactiongher allow the ‘discrete
pairing approximation’: positions in a sequence are efihged or not, rendering
structure prediction suitable for dynamic-programming algorittwhgch have



brought structure prediction for nucleic acids of up to 10[@3&s within reach for
modern desktop computers (SantaLucia and Hicks, 2004).

The most common additional approximation in predictingra@rray probe hybridi-
zation is looking at only one or two molecules at atinthe calculations for the hy-
bridization of two molecules are typically much siified further by assuming a
‘two-state model’, where the two molecules are either ‘bound state’, or not. To
model the properties of the binding process under the twoagipteximation, only
the differences of thermodynamic parameters betweehwo states need to be calcu-
lated. For such computations, corresponding rules beee derived from the meas-
urement of thermodynamic properties of selected nucleowdté purposefully
designed sequences and structures, which contained basian@w motifs
(SantaLucia, 1998). An important part of this rule-sé&rimed by the Unified Wat-
son-Crick Base-Pair Nearest-Neighbour parameters eotdiy multiple-linear re-
gression of measurements from several laborator@gdBucia, 1998) used by most
microarray probe-design tools. State-of-the-art dyams for the prediction of fold-
ing or hybridization structures of minimal and near-mirier@ergy use these parame-
ters together with the corresponding rule-set for ncoraplicated structural motifs
like mismatched pairs, bulges, hairpins and various loasgdangling ends
(SantalLucia, 1998). Tools suchrasl d (Zuker, 2003)Hy Ther

(http://ozone2. chem wayne. edu/ ), andvi ennaRNA (Hofacker, 2003) can more
accurately assess regions of non-target transcrigtatbauspected of non-specific
hybridization to a probe. Traditionally, these regiomsselected by sequence-
similarity and heuristics, however, the developmenobols that can identify regions
in a longer target DNA that will hybridize with a sharprobe by direct thermody-
namic calculation (SantalLucia and Hicks, 2004) will so@ke this inaccurate heu-
ristic approximation unnecessary (M. Zukeers.comm.2004).

Importantly, the most recent advances in thermodynaongputation now go beyond
two-state models in the prediction of hybridization hedar (Fig. 8).
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Figure 8: Multi-state coupled equilibria. A more realistiodel allows much more
accurate predictions of hybridization behaviour (Dimiteod Zuker, 2004; Santa-
Lucia and Hicks, 2004; Markham and Zuker, 2005). (Redrawndiatal ucia and
Hicks, 2004.)

Again, the same thermodynamic rule-set is used, but earoltbe taken in order to
avoid over-counting microstates: Although the experiesgtup for the determina-
tion of the rule-set has been designed to minimizedfiect, the parameters measured
for the two-state model are for tvedfectivestates (‘bound’ and ‘unbound’), each of
which is actually a combination of multiple microstat&NA Software’s commer-
cial OMP products account for this (SantaLucia and Hicks, 28@d)can provide
correct multi-state modelling allowing multiple foldingdabinding events to be con-
sidered, including multiple simultaneous interactipasmolecule. The improve-
ments achievable by moving beyond two-state models canalkseeln in DINAMelt,
which for two molecules A and B models self-folding.sand By, self-binding A-A
and B-B, as well as hetero-duplex formation A-B (Dimitemd Zuker, 2004; Mark-
ham and Zuker, 2005). DINAMelt calculates full partitioms {.e., accounting for
all possible microstates), also taking care to avoet-@ounting (N. Markham,
pers.comm.2005). The multiple folding and binding events are modetieeompeti-
tion to one another, giving temperature-dependent yieldsafir effective state.



While these methods are currently too slow to be usedrasry screens of oligonu-
cleotide-probe candidates during microarray design,dheyw much more sophisti-
cated evaluations of probe-sets.

Thermodynamic probe-design criteria

When aiming for uniform probe characteristics acrossceoarray, many probe-
designs aim for uniform melting-temperatuiigs These alone, however, only give
information about the probes’ behaviour at their respechelting-temperatures.
Probes with the sanmig, can behave quite differently at a reaction temperature
Thye<Tm. FOr a given reaction temperattigp, aiming for similar free-energies &y
would hence actually result in more uniform hybridizatidbnSantalLucia, Jr.,
pers.comm.2005). This can be improved on even further by accountmgpfapeti-
tive hybridization and actually calculating, for a targganscript, what proportion of
molecules will be bound to its probeTaly, aiming for uniformity across probes.

In screening probes, designs typically aim to avoid stexgrstructure. Clearly,
strong secondary structure may render a probe inabteefsi its target. On the other
hand, exploitingcompetitivehybridization, secondary structure can contribute much
to the specific recognition of a probe’s target. Thacisially exploited by other ex-
perimental techniques like molecular beacons (Boanhat, 1999). Using thermody-
namic models for competitive hybridization, one cataly employ probe
secondary-structure to adjust the level of specificitiamget binding to that required
(M. Zuker,pers.comm.2005),e.g, highest for the discrimination of SNPs and highly
similar targets, lower for transcript profiling transpatty allowing for polymor-
phisms.

Outlook

With the increasing understanding of hybridization onra@crays, for many future
microarray applications, the issue of probe designyéld to the task of probe-
signal interpretation. Increasingly, modern methodgeldittle freedom in probe se-
lection because probes have to target a very wehekkfiegione.g, in probing par-
ticular gene regions to elucidate regulatory binding or sigjievents. Many of these
probes will show cross-hybridization or strong secoydaucture, and probe-sets
will display a wide spectrum of thermodynamic propsrtido make the most of such
data, a combination of experimental advances and sopltéstionodelling will be in-
strumental. Repeated measurements under different tadiradi conditions can,
e.g, discriminate specific from non-specific signal by lexjing hybridization kinet-
ics (Daiet al, 2002).

A further advance in quantitative microarray analysisrbasntly come with algo-
rithms directly motivated by physical models. Applioatbf the most elementary
representation of surface adsorption, the Langmuihésat (Atkins and de Paula,
2004), could account for the nonlinearities observed at higtakintensity due to
saturation of the probe with target molecules (Heketia, 2003) — not to be con-
fused with saturation effects in the scanning of fluonesiceages. Combination of
such a Langmuir adsorption model with thermodynamie-&eergy calculations was
very successful, however, despite the significant imgmeents seen, systematic
variation was still detectable in the data, highlightimg need for further studies
(Held et al, 2003).



The measurement process on microarrays is, over ificreasingly better understood
and hence modelled. This correspondingly gives datdétiar reflect the true abun-
dances of transcripts in samples, giving better detectiaracteristics in screens of
samples for biological differences and providing a presatguior more sophisticated
work in computational biology. While, overall, a lotmrbgress has been achieved,
guantitative microarray analysis remains a challenginbaative field of research.

Supplement
Further information is available aéw. f | ychi p. or g. uk/ Met hEnz2005/ .
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