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The future of microbial genomics:
next-generation bioinformatics formillions of genomes

Thomas Rattei
Department of Microbiology and Ecosystem Science
University of Vienna
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- Microbial diversity in our environment o
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The body's microbiomes




The body's microbiomes




Fecal Transplant At Home - DIY Instructions
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Composition and health effects
of predominant human fecal bacteria

Harmful/pathogenic effects

2

Diarrhea/constipation Pathogenic
Infections (incl. Staphylococci
Liver damage production
Cancer of toxins) Clostridia
Encephalopathy

. 4
Veilloneilae \

Production of carcinogens

Intestinal putrefaction

"

*’ ) Lactobacilli
-----

‘
Bifidobacteria

Health promoting functions

Inhibition of growth
of exogeneous
and/or harmful
bacteria

Stimulation of immune
functions

Aid in digestion and/or
absorption of food
ingredients/minerals

Synthesis of
vitamins

Number/g

faeces

Log 10 scale

Gibson and Roberfroid, ] Nutr1994



Colorectal cancer-associated microbiomes (=

Off tumour On tumour

Bacteroides 3 4 1

Fusobacterium 1 2 3 4
Actinomycetales 1 2

Actinobacteria

Collinsella

1
Coriobacterium 1
Slackia 1
Enterobacteriaceae 1 2

Coriobacteriaceae

Gammaproteobacteria,
|

Aggregatibacter 2
Erysipelotrichaceae 1
Streptococcaceae 2
Peptostreptococcaceae 1

0600660060

Firmicutes

MW NP

Faecalibacterium 3 1
Eubacterium 4
Anaerovorax 1

Clostridium 3
Roseburia 1
Ruminococcaceae 1 3

Clostridiales

L

16S ribosomal RNA amplicons (V1-V3) from six Dutch individuals

Metagenome from nine Spanish, American and Vietnamese individuals

16S rRNA amplicons (V3-V5) from g5 Spanish, American, Vietnamese individuals
Metatranscriptome from nine American individuals

Tjalsma et al., Nat Rev Micro 2012



Impact of diet and individual variation

upon faecal microbiota composition
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— What's in the databases?

Verrucomicrobia - |
unclassified - |
Thermotogae - I
Thermodesulfobacteria - |
Tenericutes - .
Synergistetes - |
Spirochaetes - -

Proteobacteria - |

Planctomycetes - I
Nitrospirae - |
Ignavibacteria - |
Gemmatimonadetes - ’
Fusobacteria - I
Firmicutes - [ R
Fibrobacteres -
Elusimicrobia -
Dictyoglomi -
Deinococcus-Thermus -
Deferribacteres -

|
I
I
Il
Cyanobacteria - -
|
|
1
i

Phyla

Chrysiogenetes -
Chloroflexi —
Chlorobi -
Chlamydiae -
Caldiserica - |
Bacteroidetes - -
Aquificae - l

Actinobacteria - _

Acidobacteria - |

0 260 460
# Finished Genomes in IMG

Note: only including 1 strain per species

Finshed Genomes in IMG

Vs.

Greengenes 16S rRNA database

Genomes 16S

Phyla 29
Class 46
Order 100
Species 1268

90
249
405

99322"

*97% clustering

© Mads Albertsen



Culturability of the microbiome

[J % phylotypes
100 - M % cultured

80 -

%

60 -

w1l

0-0.5% 0.5-1% 1-2% >2%
Abundance

Walker et al., ISME J 2011



Microbial culturability o—

Uncultivable Uncultivable

Aquatic and terrestrial ecosystems Microbiomes, activated sludge

Amann et al., Microbiol Rev 1995



Genomes?

Cultivation!
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Culturomics

ORIGINAL ARTICLE BACTERIOLOGY

Microbial culturomics: paradigm shift in the human gut microbiome
study

).-C. Lagier'*, F. Armougom'*, M. Million', P. Hugon', I. Pagnier', C. Robert', F. Bittar', G. Fournous', G. Gimenez',
M. Maraninchiz, ).-F. Trape’, E. V. Koonin‘, B. La Scola' and D. Raoult'

1) Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, 2) Service de Nutrition, Maladies Métaboliques et Endocrinologie,
UMR-INRA U1260, CHU de la Timone, Marseille, France, 3) IRD, UMR CNRS 7278-IRD 198, Route des Péres Maristes, Dakar, Sénégal and 4) National
Centre for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA

...We studied stool samples from two young lean Africans from a rural environment
in Senegal and one obese French individual, using 212 different conditions, including
amoebal co-culture...

Lagier et al., Clin. Microbiol. Infect. 2012
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Genomes?

Single cells!



— Microbial dark matter

Seawater  Brackishreshwater  Hydrothermal ‘Sediment Boreactor
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Genomes?

Metagenomics!



- Genomes from metagenomes?

Original sample Metagenome reads Scaffolds
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- Genomes from metagenomes?

Original sample Metagenome reads Scaffolds
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— Binning by coverage o

Original sample Metagenome reads Scaffolds Abundance
o — I I — —
(o) . - "
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© Mads Albertsen



Binning by coverage o
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Binning by coverage o
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Binning by coverage o
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Scaffold coverage (HP")

Differential coverage binning
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Albertsen et al., Nature Biotechnology 2013



~ Upcoming so.ftware for genome-centric metagenomics o
(incomplete; some unpublished)

Differential coverage binning:
— mmgenome (Mads Albertsen/Per Nielsen)

Multi-coverage binning:
— GroopM (Michael Imelfort/Gene Tyson)
— CONCOCT (Johannes Alneberg/Christopher Quince)

Automatic evaluation, taxonomic+completeness prediction
— CheckM (Donovan Parks/Gene Tyson)



SOFTWARE EVALUATION
CHALLENGE



9.

CAMI http://cami-challenge.org

Unpublished
genome

sequences

Assemblers

Taxonomy
predictors

Binning tools

Evaluation:

* Independent

e Realistic
e Reproducible

\ ¢ Continuous




Public databases?

Re-Annotation!



-9 BLAST search at NCBI o—

Query: chlamydial protease like activity factor (CPAF)
[Waddlia chondrophila WSU 86-1044]

Search: BLASTP against NCBI RefSeq database

Description

chlamydial protease-like activity factor (CPAF) [Waddlia chondrophila WSU 86-1044]

putative chlamydial protease-like activity factor [Parachlamydia acanthamoebae str. Hall's coccus] >re

protease-like activity factor [Protochlamydia amoebophila UWE2x]

hypothetical protein CAB712 [Chlamydophila abortus S26/3]

hypothetical protein CAB1 0732[Chlamydophila abortus LLG]




Misannotations of rRNA can now generate
90% false positive protein matches in

metatranscriptomic studies

H. James Tripp', lan Hewson?, Sam Boyarsky', Joshua M. Stuart' and Jonathan

P. Zehr'*

'Department of Ocean Sciences, University of California, Santa Cruz, CA 95064, USA and 2Department of
Microbiology, Cornell University, Wing Hall 403, Ithaca, NY 14853, USA

Received March 24, 2011; Revised June 24, 2011; Accepted June 27, 2011

ABSTRACT

In the course of analyzing 9522 746 pyrosequencing
reads from 23 stations in the Southwestern Pacific
and equatorial Atlantic oceans, it came to our atten-
tion that misannotations of rRNA as proteins is now
so widespread that false positive matching of rRNA
pyrosequencing reads to the National Center for
Biotechnology Information (NCBI) non-redundant
protein database approaches 90%. One conserved
portion of 23S rRNA was consistently misannotated
often enough to prompt curators at Pfam to create a
spurious protein family. Detailed examination of the
annotation history of each seed sequence in the
spurious Pfam protein family (PF10695, ‘Cw-
hydrolase’) uncovered issues in the standard operat-
ing procedures and quality assurance programs of
major sequencing centers, and other issues relating
to the curation practices of those managing public
databases such as GenBank and SwissProt. We
offer recommendations for all these issues, and rec-
ommend as well that workers in the field of meta-
transcriptomics take extra care to avoid including
false positive matches in their datasets.

operons of Escherichia coli were published between 1967
and 1978 (7-10). The rRNA nucleotide sequences for
Saccharomyces cerevisiae, which occur in ~140 tandem
repeats, were published between 1972 and 1981 (11-14).
While artificial overexpression of a pentapeptide se-
quence adjacent to a Shine-Dalgarno motif within
E. coli 23S rRNA was found to impart drug resistance
to erythromycin (15), rRNA operons in Bacteria and
Archaea are not known to contain naturally expressed
protein coding regions that also code for rRNA. Also,
while antisense transcription was recently reported for
Bacterial and Archaeal proteins, that study did not report
antisense transcription from Bacteria and Archaea rRNA
(16). To be sure, insertion elements can be found in rRNA
operons of Bacteria and Archaea, but not sequences that
code for rRNA and protein at the same time. Therefore,
annotations of Bacteria and Archaea proteins embedded
in TRNA operons and overlapping with rRNA coding
regions within those operons have been rightly presumed
to be misannotations (17) and should continue to be, until
hard evidence to the contrary emerges. While these
misannotations continue to exist, they have the potential
to generate false positive matches of translated environ-
mental TRNA sequences to proteins. To our knowledge,
the potential for false positives in metatranscriptomic
studies due to misannotations of rRNA operons has not



~ NCBI RefSeq re-annotation initiatives:
reference genomes
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Understanding genomes?

Phenotype prediction!
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Why?

Classically Emerging
1. Interesting phenotype 1. Interesting habitat
2. Cultures/enrichments 2. Sequencing

3. Sequencing 3. Metagenomes




State-of-the-art (1)
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- State-of-the-art (2) 0=

Machine learning
Example data — model — prediction (new data)

Amlacat?

Software: PICA

- Techniques:
Association rule mining, Support vector machines

- Phenotypes: eggNOG 2 data

Roman Feldbauer



Does it work in 2015?

« Today: more genomes, more COGs (eggNOG 4)
« Improvement of SVM plugin
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Does it work on incomplete genomes?

Phenotype
+aerobe
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Genome completeness [%]

~70% completeness often sufficient




Modeling metabolic traits

Methanotroph TRAIT Nitrifier
pMoA MARKERS amoA
mmoX nxrB
mxaF
(+) 33 GENOMES in (+) 35
(-) 86 training set (-) 340
97.2 + 4.6 % Prediction 97.7 + 4.7 %
ACCURACY
1. pmoA Proteins of highest PREDICTIVE 1. DUF2024
4. mmoX POWER (structural similarities to
5. uncharacterized protein (novel feature ranking nitrogen regulatory protein P-II
17. mxaF mechanism) and nitrogen fixation protein
NifU)
Expected markers +  new associations




Modeling complex traits

Intracellular lifestyle
« Genome reduction?
e (+) 76, (-) 56 genomes
o Accuracy96.7+4.12%

« Top 5o features:

48 negative predictors
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Outlook

Genome-centric metagenomics

Independent method evaluation in metagenomics

Genome re-annotation in public databases

Computational prediction of simple and complex traits

« Automatic analysis of metagenomes
« Continuous annotation of genomes/bins from public databases



Precision microbiome reconstitution restores bile
acid mediated resistance to Clostridium difficile

Charlie G. Buffie', Vanni Bucci™*, Richard R. Stein’, Peter T. McKenney™?, Lilan Ling®, Asia Gobourne?, Daniel No*, Hui Liu®,
Melissa Kinnebrew'?, Agnes Viale®, Eric Littmann?, Marcel R. M. van den Brink”®, Robert R. Jenq’, Ying Taur'-, Chris Sander?,

Justin R. Cross’, Nora C. Toussaint*~, Joao B. Xavier*’

The gastrointestinal tracts of mammals are colonized by hundreds
of microbial species that contribute to health, including coloniza-
tion resistance against intestinal pathogens'. Many antibiotics des-
troy intestinal microbial communities and increase susceptibility
to intestinal pathogens®. Among these, Clostridium difficile,a major
cause of antibiotic-induced diarrhoea, greatly increases morbidity
and mortality in hospitalized patients’. Which intestinal bacteria pro-
vide resistance to C. difficile infection and their in vivo inhibitory
mechanisms remain unclear. Here we correlate loss of specific bac-
terial taxa with development of infection, by treating mice with dif-
ferent antibiotics that resultin distinct microbiota changes andlead
to varied susceptibility to C. difficile. Mathematical modelling aug-
mented by analyses of the microbiota of hospitalized patients iden-
tifies resistance-associated bacteria common to mice and humans.
Using these platforms, we determine that Clostridium scindens, a bile
acid 7a-dehydroxylatingintestinal bacterium, is associated with resis-
tance to C. difficile infection and, upon administration, enhances
resistance to infection in a secondary bile acid dependent fashion.
Using a workflow involving mouse models, clinical studies, meta-
genomic analyses, and mathematical modelling, we identifya probi-
otic candidate that corrects a clinically relevant microbiome deficiency.
These findings have implications for the rational design of targeted
antimicrobials as well as microbiome-based diagnostics and thera-
peutics for individuals at risk of C. difficile infection.

& Eric G. Pamer

1,28

microbiota alpha diversity (that is, diversity within individuals) (Fig. 2a),
consistent with previous studies®. Using weighted UniFrac’ distances to
evaluate beta diversity (that is, diversity between individuals), we found
that although clindamycin and ampicillin administration induced dis-
tinct changes in microbiota structure, recovery of resistance corresponded
with return to a common coordinate space shared by antibiotic-naive
animals (Fig. 2b). However, these diversity metrics generally did not
resolve the susceptibility status of animals harbouring microbiota with
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Unusual biology across a group comprising more
than 15% of domain Bacteria

Christopher T. Brown', Laura A. Hug?, Brian C. Thomas?, Itai Sharon?, Cindy J. Castelle?, Andrea Singh?, Michael J. Wilkins®,
Kelly C. Wrighton*, Kenneth H. Williams® & Jillian F. Banfield*>-

A prominent feature of the bacterial domain is a radiation of major
lineages that are defined as candidate phyla because they lack iso-
lated representatives. Bacteria from these phyla occur in diverse
environments' and are thought to mediate carbon and hydrogen
cycles®’. Genomic analyses of a few representatives suggested that
metabolic limitations have prevented their cultivation® . Here we
reconstructed 8 complete and 789 draft genomes from bacteria
representing =35 phyla and documented features that consistently
distinguish these organisms from other bacteria. We infer that this
group, which may comprise >>15% of the bacterial domain, has
shared evolutionary history, and describe it as the candidate phyla
radiation (CPR). All CPR genomes are small and most lack numer-
ous biosynthetic pathways. Owing to divergent 16S ribosomal
RNA (rRNA) gene sequences, 50-100% of organisms sampled
from specific phyla would evade detection in typical cultivation-
independent surveys. CPR organisms often have self-splicing
introns and proteins encoded within their rRNA genes, a feature
rarely reported in bacteria. Furthermore, they have unusual ribo-
some compositions. All are missing a ribosomal protein often
absent in symbionts, and specific lineages are missing ribosomal
proteins and biogenesis factors considered universal in bacteria.
This implies different ribosome structures and biogenesis mechan-
isms, and underlines unusual biology across a large part of the
bacterial domain.

to previously unrecognized lineages (CPR1-3; Fig. 1). In total, 789
draft-quality (=50% complete) genomes were reconstructed (Table 1).
We manually curated eight genomes to completion: the first three from
Microgenomates, two from Parcubacteria, one each from Kazan and
Berkelbacteria, and an additional genome from Saccharibacteria. All
complete and draft genomes are small and most are <1 Mb in length
(Supplementary Tables 3 and 4).

In total, 1,543 bacterial 16S rRNA genes =800 bp were assembled
and curated to eliminate assembly errors (713 sequences clustered at
97% identity; Supplementary Data 1). Relative abundance measure-
ments show enrichment of CPR organisms in small-cell filtrates,
suggesting that they have ultra-small cells (Extended Data Fig. 3).
This finding is supported by a recent microscopy study”. Surpris-
ingly, 31% of 16S rRNA genes encoded a large (=10 bp) insertion
sequence (maximum 2,004 bp; mean 519 bp; standard deviation
(s.d.) 372 bp; Supplementary Table 5). Insertions are found in phylo-
genetically diverse members of CPR phyla (Fig. 1, Supplementary Fig. 1
and Supplementary Data 2). Insertion sites are clustered in several
distinct locations on the 16SrRNA gene, both in variableand conserved
regions (Fig. 2). Most insertions =500 bp encode a catalytic RNA
intron (group I orII) and/or an open reading frame (ORF), suggesting
that they are self-splicing Encoded proteins frequently belong to
families of homing endonucleases (LAGLIDAG 1-3 and GIY-YIG).
However, 25% are not similar to known protein families or to each



