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Charles Darwin: Evolutionary Relationships

Charles Darwin (1809-1882)
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Traces of Sequence Evolution
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Some Notation
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Note: branch = edge = split, external node = leaf = taxon are used
interchangebly.
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Main Types of Phylogenetic Methods

Data Method
Evaluation
Criterion

Maximum Parsimony Parsimony

Characters
(Alignment)

 Statistical Approaches:

Likelihood, Bayesian


Evolutionary

Models

Distances Distance Methods
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The most simple tree: How to get distances?

The most simple tree could be seen as two
sequences and the distance between them.

Distances can be computed in various ways. . .

Usually via Maximum Likelihood.

Ronald Fisher (1890-1962)

Joe Felsenstein (born 1942)
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Introduction: ML on Coin Tossing

Given a box with 3 coins with different levels of fairness
(
1
3 ,

1
2 ,

2
3 heads

)

We take out one coin and toss 20 times:

H,T ,T ,H,H,T ,T ,T ,T ,H,T ,T ,H,T ,H,T ,T ,H,T ,T

Probability Likelihood

p(k heads in n tosses|θ) ≡ L(θ|k heads in n tosses)

=

(
n

k

)
θk(1− θ)n−k

(here binomial distribution)

Aim: The ML approach seaches for that parameter set θ for the
generating process which maximizes the probability of our given data.

Hence, ”likelihood flips the probability around.”
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Introduction: ML on Coin Tossing (Estimate)

coint tossing: 7 heads, 13 tails

theta [% heads]

lik
el

ih
oo

d(
th

et
a)
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Three coin case

L(θ|7 heads in 20) =

(
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)
θ7(1−θ)13

for each coin θ ∈
{

1
3 ,

1
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2
3

}

For infinitely many coins
θ = (0...1)

ML estimate: L(θ̂) = 0.1844 where
coin shows θ̂ = 0.35 heads
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From Coins to Phylogenies?

While the coin tossing example might look easy, in phylogenetic analysis,
the parameter (set) θ comprises:

evolutionary model

its parameters

tree topology

its branch lengths

That means a high dimensional optimization problem.
Hence, some parameters are often estimated/set separately.
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Modeling Evolution

Evolution is usually modeled as a

stationary, time-reversible Markov process.

What does that mean?
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Assumptions on Evolution

Markov Process

The (evolutionary) process evolves
without memory, i.e. sequence S2
mutates to S3 during time tn+1

independent of state of S1.

A A G G C T T C A G... ...=S1

time t n

A A G C T C A G... ...G C=2S

time t n+1

A G C T C A G... ...AGT=3S
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Assumptions on Evolution

Stationary:
The overall character frequencies πj of the nucleotides or amino acids are
in an equilibrium and remain constant.

Time-Reversible:
Mutations in either direction are equally likely

πi · Pij(t) = Pji (t) · πj

This means a mutation is as likely as its back mutation.

P(i → j) = P(i ← j) (JC69)
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Substitution Models

Evolutionary models are often described using a substitution rate matrix R
and character frequencies Π. Here, 4× 4 matrix for DNA models:
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f

e

R =

A C G T
− a b c
a − d e
b d − f
c e f −



Π = (πA, πC , πG , πT )

From R and Π we reconstruct a
substitution probability matrix P,
where Pij(t) is the probability
of changing i → j in time t.
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Relations between DNA models

equal base frequencies

JC69

2 transitions)
(transversions,
3 subst. types 6 subst. types

(4 transversions,
2 transitions)

frequencies
different base

2 subst. types
(transitions vs.
transversions)

frequencies

1 substitution type,

different base

F81

2 subst. types
(transitions vs.
transversions)

HKY85 TN93 GTR

K2P

Further modification:
rate heterogeneity

: invariant sites, Γ-distributed rates, mixed.
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Protein Models

Generally this is the same for protein sequences, but with 20× 20
matrices. Some protein models are:

Poisson model (”JC69” for proteins, rarely used)
Dayhoff (Dayhoff et al., 1978, general matrix)
JTT (Jones et al., 1992, general matrix)
WAG (Whelan & Goldman, 2000, more distant sequences)
VT (Müller & Vingron, 2000, distant sequences)
mtREV (Adachi & Hasegawa, 1996, mitochondrial sequences)
cpREV (Adachi et al., 2000, cloroplast sequences)
mtMAM (Yang et al., 1998, Mammalian mitochondria)
mtART (Abascal et al., 2007, Arthropod mitochondria)
rtREV (Dimmic et al., 2002, reverse transcriptases)
. . .
BLOSUM 62 (Henikoff & Henikoff, 1992) → for database searching
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Computing ML Distances Using Pij(t)

The Likelihood of sequence s evolving to s ′ in time t:

L(t|s → s ′) =
m∏
i=1

(
Π(si ) · Psi s

′
i
(t)
)

Likelihood surface for two
sequences under JC69:

GATCCTGAGAGAAATAAAC = s ′

GGTCCTGACAGAAATAAAC = s

Note: we do not compute the
probability of the distance t
but that of the data D = {s, s ′}. 0.00 0.05 0.10 0.15 0.20 0.25

−
39

.0
−

38
.5

−
38

.0
−

37
.5

−
37

.0
−

36
.5

−
36

.0

branch length [subst. per site]

lo
g−

lik
el
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oo

d(
t)

lnL= −36.4

ααt= 0.1073
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Jukes-Cantor Correction for Multiple Mutations

GTA A GCCG C A

tim
e
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10

The substitution process is commonly modeled as a Markov process.
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Computing Likelihood Values for Trees

Given a tree with branch lengths and sequences for all nodes, the
computation of likelihood values for trees is straight forward.
Unfortunately, we usually have no sequences for the inner nodes (ancestral
sequences).
Hence we have to evaluate every possible labeling at the inner nodes:

G

C

C

C

L =
G

C

C

C
A AL +

G

C

C

C
A CL + · · ·+

G

C

C

C
G CL + · · ·+

G

C

C

C
TTL

for every column in the alignment. . . but there is a faster algorithm.
(Peeling Algorithm by Felsenstein, 1981)
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column

and a given tree:

...

...

...

...

...

...C
C
G
C
k

1:
2:
3:
4:

...

...

Likelihoods of nucleotides i at inner nodes:

L5(i) = [PiC (d1) · L1(C )] · [PiG (d2) · L2(G )]

L6(i) =
∏

v={3,4,5}

 ∑
j={ACGT}

Pij(dv ) · Lv (j)


Site-Likelihood of an alignment column k :
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Likelihoods of Trees (multiple columns)

GGC

CCCCCC

2
CCG

0.00548855
0.00548855
0.00548855

6

0.1

0.1

0.1

0.1 0.1

35

1

4

Considering this tree with n = 4 sequences of
length m = 3 the tree likelihood of this tree
is

L(T ) =
m∏

k=1

L(k)

= 0.0054892 · 0.005489

= 0.0000001653381

or the log-likelihood

lnL(T ) =
m∑

k=1

ln L(k) = −15.61527
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.
(1.) Choose a branch. (2.) Move the virtual root to an adjacent node.
(3.) Compute all partial likelihoods recursively. (4.) Adjust the branch
length to maximize the likelihood value.

1.

2. 3.
4.

Repeat this for every branch until no better likelihood is gained.

This is based on the Pulley-Principle (Felsenstein, 1981) which states that
the root can be moved on the tree but the likelihood doesn’t change.
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Number of Trees to Examine. . .

B

A
C

B(n) = (2n−5)!
2n−3(n−3)!

B(10) = 2027025
B(55) = 2.98 · 1084

B(100)= 1.70 · 10182
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Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees
are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound: guarantees to find the optimal tree, without searching
certain parts of the tree space – can run on more sequences,
but often not for current-day datasets.

Heuristics: cannot guarantee to find the optimal tree, but are at least
able to analyze large datasets.
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Build up a tree: Stepwise Insertion
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-4579.17-4610.40

Is also used for other (non-ML) methods like parsimony.
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Local Maxima

What if we have multiple maxima in the likelihood surface?

Tree rearrangements to escape local maxima.
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Tree Rearrangements: Scanning a Tree’s Neighborhood

full tree

F

GH

B

A

C D

E

From a current tree construct other trees by rearranging its subtrees and

evaluates all resulting trees. Repeat with the best tree found, until no better tree

can be found. This also used for other (non-ML) methods, like parsimony.
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How reliable is the reconstructed tree:

Usually programs deliver a single (best) tree, but without confidence
values for the subtrees.

How can we assess reliability for the subtree?
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Bootstrap and Consensus Tree

Bootstrapping creates many pseudo-alignments by sampling
alignment columns with replacement from the original alignment.

From the pseudo-alignment we reconstruct trees.

From the trees we collect and count all splits.

From the splits we construct a consensus tree.

Definition: A split A|B in the tree is the bipartition of the
leaves/taxa into two subsets A and B induced by removing an edge or
branch from the tree.

Definition: Two splits A|B and C |D are compatible, i.e. not
contradictory, if at least one intersection of A ∩ C , A ∩ D, B ∩ C ,
B ∩ D is empty.
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Estimating Confidence: The Bootstrap
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Summarizing Trees: Consensus Methods
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Strict consensus: contains all splits occuring in all input tree.

Semi-strict consensus: contains all splits which are not contradicted
by any tree.

Majority consensus M`: contains all splits which occur in more than `
input trees, where ` ≥ 50% typically exactly 50%.
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Bayesian Phylogenetics

The Bayesian approach asks the right question in a hypothesis testing
procedure, namely, ”What is the probability that this hypothesis is true,
given the data?” rather than the classical approach, which asks a question
like, ”Assuming that this hypothesis is true, what is the probability of the
observed data?”
Ewens & Grant: Statistical Methods in Bioinformatics (2010)
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Bayesian statistics

Bayesian statistics tries to determine the probability of the hypothesis:

Pr(hypothesis|data) =
Pr(hypothesis)× Pr(data|hypothesis)

Pr(data)

where

Pr(data|hypothesis) is the ’likelihood’

Pr(hypothesis) is the prior distribution

Pr(hypothesis|data) is the posterior distribution

Pr(data) is the marginal likelihood
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Bayesian Phylogenetics

Bayesian statistics tries to determine the probability of the hypothesis (i.e.
tree topologies, branch lengths, evolutionary model with its parameters):

p(T ,M|D) =
p(T )× p(M)× Pr(D|T ,M)

Pr(D)

where

Pr(D|T ,M) is the ’likelihood’

p(T ) is the prior distribution on the trees

p(M) is the prior distribution on the evolutionary model

Pr(T ,M|data) is the posterior distribution

Pr(D) is the marginal likelihood of the data

The output of a Bayesian evolutionary analysis is a probability
distribution on trees and parameter values.
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