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Charles Darwin: Evolutionary Relationships

Charles Darwin (1809-1882)
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Traces of Sequence Evolution
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Some Notation

leaf/taxon

Y
A B

extefnal
branch
a4

4
inner node .

) ; root
internal branch )
multifurcation

CcC D E F G
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Some Notation

leaf/taxon

Y
A B

extefnal
branch
a4

Lo d
inner node .

) ; root
internal branch )
multifurcation

CcC D E F G

internal
branch

multifurcation

» inner node

A g
external bifurcation
branch
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Some Notation

leaf/taxon
'
A B C D E F G

internal multifurcation
branch :

external

E

branch A
o y 3 B leaves/taxa

inner/lnode 4 g )
3 » inner node F
, root . e
internal branch : external bifurcation
multifurcation branch G

Note: branch = edge = split, external node = leaf = taxon are used
interchangebly.

A Short Introduction To Likelihood in Phylogenetics



Main Types of Phylogenetic Methods

Data Method Eva.lua.tlon
Criterion
Maximum Parsimony Parsimony
Characters

(Alignment) Statistical Approaches: .
Evolutionary

Likelihood, Bayesian
Models

Distances Distance Methods
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The most simple tree: How to get distances?

The most simple tree could be seen as two
sequences and the distance between them.

Distances can be computed in various ways. . .
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The most simple tree: How to get distances?

The most simple tree could be seen as two
sequences and the distance between them.

Distances can be computed in various ways. . .

Ronald Fisher (1890-1962)

Usually via Maximum Likelihood.

Joe Felsenstein (born 1942)
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Introduction: ML on Coin Tossing

Given a box with 3 coins with different levels of fairness (%, %,% heads)
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Introduction: ML on Coin Tossing

Given a box with 3 coins with different levels of fairness (%, %,% heads)

We take out one coin and toss 20 times:
HT T,HHT,T,T, T,H T, T,H T, H T, T,HT,T
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Introduction: ML on Coin Tossing

Given a box with 3 coins with different levels of fairness (%, %,% heads)

We take out one coin and toss 20 times:
HT T,HHT,T,T, T,H T, T,H T, H T, T,HT,T

Probability
p(k heads in n tosses|6)

Aim: The ML approach seaches for that parameter set 6 for the
generating process which maximizes the probability of our given data.
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Introduction: ML on Coin Tossing

Given a box with 3 coins with different levels of fairness (%, %,% heads)

We take out one coin and toss 20 times:
HT T,HHT,T,T, T,H T, T,H T, H T, T,HT,T

Probability Likelihood
p(k heads in n tosses|d) = L(6|k heads in n tosses)

Aim: The ML approach seaches for that parameter set 6 for the
generating process which maximizes the probability of our given data.

Hence, " likelihood flips the probability around.”
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Introduction: ML on Coin Tossing

Given a box with 3 coins with different levels of fairness (%, %,% heads)

We take out one coin and toss 20 times:
HT T,HHT,T,T, T,H T, T,H T, H T, T,HT,T

Probability Likelihood
p(k heads in n tosses|@) = L(0|k heads in n tosses)

= <Z> 6k(1 — 6)"

(here binomial distribution)

Aim: The ML approach seaches for that parameter set 6 for the
generating process which maximizes the probability of our given data.

Hence, " likelihood flips the probability around.”
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Introduction: ML on Coin Tossing (Estimate)

likelihood(theta)

0.20

0.15

0.10

0.05

0.00

coint tossing: 7 heads, 13 tails
Three coin case

20

L(6]7 heads in 20) = <7

>07(10)13

for each coin 0 € {%, %, %}

0.00285

T T T T
13 12 213 1

theta [% heads]
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Introduction: ML on Coin Tossing (Estimate)

likelihood(theta)

0.20

0.15

0.10

0.05

0.00

coint tossing: 7 heads, 13 tails
Three coin case

20

L(6]7 heads in 20) = <7

>07(10)13

for each coin 0 € {%, %, %}

0.07393

0.00285

T T T T
13 12 213 1

theta [% heads]
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Introduction: ML on Coin Tossing (Estimate)

likelihood(theta)

0.20

0.15

0.10

0.05

0.00

coint tossing: 7 heads, 13 tails

0.18213

0.07393

0.00285

T T T
13 12 213

theta [% heads]

Three coin case

20

L(6]7 heads in 20) = <7

>07(10)13

for each coin 0 € {%, %, %}
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Introduction: ML on Coin Tossing (Estimate)

likelihood(theta)

0.20

0.15

0.10

0.05

0.00

coint tossing: 7 heads, 13 tails

Three coin case

20

L(6]7 heads in 20) = <7

>07(10)13

for each coin 0 € {%, %, %}

For infinitely many coins
0 =(0...1)

0.0

0.2

T T T T
0.4 0.6 0.8 1.0

theta [% heads]
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Introduction: ML on Coin Tossing (Estimate)

likelihood(theta)

0.20

0.15

0.10

0.05

0.00

coint tossing: 7 heads, 13 tails

0.0

0.2

T T
0.4 0.6

theta [% heads]

0.8

1.0

Three coin case

20

L(6]7 heads in 20) = <7

>07(10)13
for each coin 6 € {%, %, %}

For infinitely many coins
0 =(0...1)

~

ML estimate: L(0) = 0.1844 where
coin shows 6 = 0.35 heads
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From Coins to Phylogenies?

While the coin tossing example might look easy, in phylogenetic analysis,
the parameter (set) 6 comprises:

@ evolutionary model
@ its parameters
@ tree topology
@ its branch lengths

That means a high dimensional optimization problem.
Hence, some parameters are often estimated/set separately.

A Short Introduction To Likelihood in Phylogenetics



Modeling Evolution

@ Evolution is usually modeled as a
stationary, time-reversible Markov process.

@ What does that mean?
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Assumptions on Evolution

Markov Process

1

. time t
The (evolutionary) process evolves et

without memory, i.e. sequence S S,= ... AAGGCCTCAG ...
mutates to S3 during time t,i1
independent of state of S;.

time t 4

3

S =...AAGGCTTCAG...

S.=...ATGGACTCAG ...
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Assumptions on Evolution

Stationary:
The overall character frequencies 7; of the nucleotides or amino acids are
in an equilibrium and remain constant.

Time-Reversible:
Mutations in either direction are equally likely

mi - Pyj(t) = Pji(t) - mj
This means a mutation is as likely as its back mutation.

P(i — j) = P(i <)) (JC69)
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Substitution Models

Evolutionary models are often described using a substitution rate matrix R
and character frequencies 1. Here, 4 x 4 matrix for DNA models:

H\ 5 A C G T
® — a b c

® O 'ﬁ ‘ a — d e
(s b 3 ‘ R = b d . f

3 ) c e f -

M= (ra,7c, 76, TT)

a‘ f
d c
|
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Substitution Models

Evolutionary models are often described using a substitution rate matrix R
and character frequencies 1. Here, 4 x 4 matrix for DNA models:

A C G T

— a b c
a — d e
R= b - f
c e f -

M= (ra,7c, 76, TT)

From R and 1 we reconstruct a
substitution probability matrix P
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Substitution Models

Evolutionary models are often described using a substitution rate matrix R
and character frequencies 1. Here, 4 x 4 matrix for DNA models:

H\ . A C G T
GQ - a b ¢
® € _
2t | R=| if‘
3 H
c e f -

-

M= (ra,7c, 76, TT)

e

From R and I1 we reconstruct a
substitution probability matrix P,
4 where Pj;(t) is the probability

of changing i — j in time t.
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Relations between DNA models

K2P

2 subst. types
(transitions vs.
transversions)

different base
frequencies

JC69
1 substitution type, HKY85 ——>» TN93 ———>» GTR
equal base frequencies 3 subst. types 6 subst. types
(transversions, (4 transversions,
2 transitions) 2 transitions)

different base 2 subst. types
frequencies (transitions vs.
transversions)

F81
Further modification:
rate heterogeneity
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Relations between DNA models

K2P

2 subst. types
(transitions vs.
transversions)

different base
frequencies

JC69
1 substitution type, HKY85 ——>» TN93 ———>» GTR
equal base frequencies 3 subst. types 6 subst. types
(transversions, (4 transversions,
2 transitions) 2 transitions)

different base 2 subst. types
frequencies (transitions vs.
transversions)

F81

Further modification:
rate heterogeneity: invariant sites, [-distributed rates, mixed.
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Protein Models

Generally this is the same for protein sequences, but with 20 x 20
matrices. Some protein models are:

®© © 6 6 6 6 6 6 6 6 0 o

Poisson model ("JC69" for proteins, rarely used)

Dayhoff (Dayhoff et al., 1978, general matrix)

JTT (Jones et al., 1992, general matrix)

WAG (Whelan & Goldman, 2000, more distant sequences)
VT (Miiller & Vingron, 2000, distant sequences)

mtREV (Adachi & Hasegawa, 1996, mitochondrial sequences)
cpREV (Adachi et al., 2000, cloroplast sequences)

mtMAM (Yang et al., 1998, Mammalian mitochondria)
mtART (Abascal et al., 2007, Arthropod mitochondria)
rtREV (Dimmic et al., 2002, reverse transcriptases)

BLOSUM-62{(Henikoff-& Henikeff 1992} — for database searching
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Computing ML Distances Using Pj(t)

The Likelihood of sequence s evolving to s’ in time t:

(151 Pes)

Likelihood surface for two
sequences under JC69:

GATCCTGAGAGAAATAAAC = &'
GGTCCTGACAGAAATAAAC =5

::]3

L(t|ls — &)
i=1



Computing ML Distances Using Pj(t)

The Likelihood of sequence s evolving to s’ in time t:

m

L(t|ls —s')= H (H(Si) : Ps,-s,-’(t)>

i=1
Likelihood surface for two
sequences under JC69:

GATCCTGAGAGAAATAAAC = &'
GGTCCTGACAGAAATAAAC =5

Note: we do not compute the
probability of the distance t

but that of the data D = {s, s'}.

log-likelihood(t)
| | | |

-390 -385 -380 -375 -37.0 -365 -36.0

InL= | -36.4

at= 1 0.1073
T T T T T
0.05 0.10 0.15 0.20 0.25

branch length [subst. per site]




Jukes-Cantor Correction for Multiple Mutations

time

AGCCATGCAG
10

0 2

4 6 8 10
distance
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Jukes-Cantor Correction for Multiple Mutations

time

A GCCATGCAG

A G CCA

Cc

G CAG

10

0 2 4 6 8 10
distance
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Jukes-Cantor Correction for Multiple Mutations

A GCCATSGTCAG
A GCCACGCAG 10
A G CC|GC/GCAG 8
%36

Q
g g 4
2
0
0 2 4 6 8 10
distance
4 L
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Jukes-Cantor Correction for Multiple Mutations

time

(e} ¢]
>

oOd+od>
o

10

0 2 4 6 8 10
distance
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Jukes-Cantor Correction for Multiple Mutations

time

odad>» >

o<o

O

o<+

10

observed

0 2 4 6 8 10
distance
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Jukes-Cantor Correction for Multiple Mutations

The s

AGCCAJ}GCAG
AGCCAICIGCAG 10
%
AGCCI|GIC/IGCAG 8
b
AGCCIClC/IGCAG
aa B 6
AGCCICIGIGCAG %
° 52
£ A G Cl|AlCGIGCAG 8 4
2
0
0 2 4 6 8 10
distance
4 I

ubstitution process is commonly modeled as a Markov process.
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Jukes-Cantor Correction for Multiple Mutations
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The substitution process

S

A G

A G 10

A G 8

A G

A G %6

A G 8 4

A G 2
0

0 2 4 6 8 10
distance

commonly modeled as a Markov process.
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Jukes-Cantor Correction for Multiple Mutations

AGCCATGCAG
AGCCA?I»GCAG 10
AGCCECGCAG 8
AGCCIClC/IGCAG B
AGccciGCAG %6
§ AGCJXCGGCAG 8 4
AGiACGGCAG 5
AGGACfGCAG
0
0 2 4 6 8 10
distance
4 N

The substitution process is commonly modeled as a Markov process.
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Jukes-Cantor Correction for Multiple Mutations

AGCCATGCAG
AGCCA?I»GCAG 10
AGCCECGCAG 8
AGCCIClC/IGCAG B
AGccciGCAG %6
§ AGCJXCGGCAG 8 4
AGiACGGCAG 5
AGGACfGCAG
A G G||Allc//A G C A A 00 > 4 6 8 10
distance
4 N

The substitution process is commonly modeled as a Markov process.
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Jukes-Cantor Correction for Multiple Mutations

AGCCATGCAG
AGCCA?GCAG 10
AGCCéCGCAG 8
AGcclicllcgcaAacac B
AGccciGCAG %6

£ AGCJXCGGCAG S 4
AGiACGGCAG 5
AGGACfGCAG
AGE:ACAGCAA 00 5 4 6 ) 10
A G cllallcllalc c Ala distance
A A S I

The substitution process is commonly modeled as a Markov process.
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Jukes-Cantor Correction for Multiple Mutations
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The substitution process

S

A G

A G 10

A G 8

A G

A G % 6

A G 8 4

A G >

A G

AlA % 2 4 6 8 10
A A distance

A A

commonly modeled as a Markov process.
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Jukes-Cantor Correction for Multiple Mutations
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The substitution process

S

A G

A G 10

A G 8

A G

A G % 6

A G 8 4

A G >

A G

AlA % 2 4 6 8 10
A A distance

A A

commonly modeled as a Markov process.
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Jukes-Cantor Correction for Multiple Mutations

>
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®
(e]
>
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(9]
®
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(4>

The substitution process

S

A G
A G 10
A G 8
A G _8
A G % 6 —
//
A G 8 4
A G
2
A G
0
AlA 0 2 4 6 8 10
A A distance
A A
commonly modeled as a Markov process.
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Computing Likelihood Values for Trees

Given a tree with branch lengths and sequences for all nodes, the
computation of likelihood values for trees is straight forward.
Unfortunately, we usually have no sequences for the inner nodes (ancestral
sequences).
Hence we have to evaluate every possible labeling at the inner nodes:
C (o} C (o} C C C C C (o}
L) = Lo L L
G C G C G C G C G C
for every column in the alignment. .. but there is a faster algorithm.
(Peeling Algorithm by Felsenstein, 1981)
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column

k
1.1 ..C..
2.0 ..G...
3i..C...
4:1..C..
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column
and a given tree:

o Helop
LT
o0
LT

00>

—HOO>
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column
and a given tree:

A[0] [A[0]
clo
Go
Tlo| [Tlo]
@

00>

with all dy = 0.1 and P,-j(m):{ ot 24 0o

—HOO>
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column

and a given tree: Likelihoods of nucleotides i at inner nodes:
rH Ls(i) = [Pic(dh) - Li(C)] - [Pic(d2) - L2(G)]
IG[0]
Tlo] [Tlo]
@

—H® 0>

with all dy = 0.1 and P,-,-(m):{ ot 24 0o

—HOO>
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column
and a given tree: ~ Likelihoods of nucleotides i at inner nodes:

&% Ls() = [Pic(dh) - Ls(C)] - [Pic(h) - La(G)]
IGO0 |
®

—H® 0>

with all dy = 0.1 and P,-,-(m):{ ot 24 0o

—HOO>
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column

and a given tree: Likelihoods of nucleotides i at inner nodes:
% ?18 Ls(i) = [PiC(dl) : LI(C)] ’ [PiG(dz) ’ L2(G)]
IGlo]
Tlo] [Tlo]
® @

()= ]I > Py(d) - L())

v={3,4,5} |j={ACGT}

with all dy = 0.1 and P,-j(m):{ ot 24 0o

= O>
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column

and a given tree: Likelihoods of nucleotides i at inner nodes:
% ?18 Ls(i) = [PiC(dl) : LI(C)] ’ [PiG(dz) : L2(G)]
IGlo]
Tlo] [Tlo]
@

()= ]I > Py(d) - L())

v={3,4,5} |j={ACGT}

A[0.0000027 ) L9068 =]
Cl0.0219225 with all dy = 0.1 and Pj;(0.1) = { 0313 i+ (JO)
G[0.0000263

T/0.0000027
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column

and a given tree: Likelihoods of nucleotides i at inner nodes:
% ?18 Ls(i) = [PiC(dl) : LI(C)] ’ [PiG(dz) ’ L2(G)]
IGlo]
Tlo] [Tlo]
@

()= ]I > Py(d) - L())

v={3,4,5} |j={ACGT}

Site-Likelihood of an alignment column k:

= ) - Le(i) = 0.005489

i={ACGT}
A[0.0000027 ) L9068 =]
Cl0.0219225 with all dy = 0.1 and Pj;(0.1) = { 0313 i+ (JO)
(G[0.0000263
T0.0000027
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Likelihoods of Trees (multiple columns)

Considering this tree with n = 4 sequences of

CCG GGC length m = 3 the tree likelihood of this tree
is
CCC cccC i
5 swss asse L(T)=][]L®
0.1 k=1
0.1 0.1
6 @&
22a
%%
HH S
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Likelihoods of Trees (multiple columns)

Considering this tree with n = 4 sequences of

CCG GGC length m = 3 the tree likelihood of this tree
is
CCC CcCC il
5 ssse asse L(T)=]J[L™ = 0005489 -0.005489
0.1 k=1
0 01 = 0.0000001653381
6 @&
X
Ban
55
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Likelihoods of Trees (multiple columns)

Considering this tree with n = 4 sequences of

CCG GGC length m = 3 the tree likelihood of this tree
is
CCC CcCC il
5 ssse asse L(T)=]J[L™ = 0005489 -0.005489
0.1 k=1
02 01 = 0.0000001653381
6 ;%2%% or the log-likelihood
Ban m
R In£(T)=> InLt = 1561527
k=1
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.

(1.) Choose a branch. (2.) Move the virtual root to an adjacent node.
(3.) Compute all partial likelihoods recursively. (4.) Adjust the branch
length to maximize the likelihood value.

1.

A Short Introduction To Likelihood in Phylogenetics



Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.

(1.) Choose a branch. (2.) Move the virtual root to an adjacent node.
(3.) Compute all partial likelihoods recursively. (4.) Adjust the branch
length to maximize the likelihood value.

1. 2.
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.

(1.) Choose a branch. (2.) Move the virtual root to an adjacent node.
(3.) Compute all partial likelihoods recursively. (4.) Adjust the branch
length to maximize the likelihood value.

1. 2. 3
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.

(1.) Choose a branch. (2.) Move the virtual root to an adjacent node.
(3.) Compute all partial likelihoods recursively. (4.) Adjust the branch
length to maximize the likelihood value.

1. 2. 3
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.

(1.) Choose a branch. (2.) Move the virtual root to an adjacent node.
(3.) Compute all partial likelihoods recursively. (4.) Adjust the branch
length to maximize the likelihood value.

1. 2. 3.

N/

Repeat this for every branch until no better likelihood is gained.
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.

(1.) Choose a branch. (2.) Move the virtual root to an adjacent node.
(3.) Compute all partial likelihoods recursively. (4.) Adjust the branch
length to maximize the likelihood value.

1. 2. 3.

N/

Repeat this for every branch until no better likelihood is gained.

This is based on the Pulley-Principle (Felsenstein, 1981) which states that
the root can be moved on the tree but the likelihood doesn’t change.
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Number of Trees to Examine. ..

NI 2% pa % e e
@ ® © g ® & ® © ®
2% e f eaf e
© © & ® © ® © ®
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ee
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Number of Trees to Examine. ..

NI 2% 9% e e
@ ® © g ® & ® © ®
2% a0 f eaf e
© © & ® © ® © ®

®

?f
&
@0
&
© %
ee
&
T %
o
®
Y %

2n—5)!
B(n) = poi2sy
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Number of Trees to Examine. ..

NI 2 ? 00 ? 0a b o
® ® © g ® & b & &
2 ? 00 P 0a % o
¢ © g ® © ® ©® &
2.} 0af e f e
® © & ®» © ®» ©® ©
B(n) = y&-o 0 oo se P e
B(10) = 2027025 990 600 900
B0 170, 101 al o6 [ ®6 I @
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Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees
are evaluated, but not feasible for more than 10-12 taxa.
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Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees
are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound: guarantees to find the optimal tree, without searching
certain parts of the tree space — can run on more sequences,
but often not for current-day datasets.
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Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees
are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound: guarantees to find the optimal tree, without searching
certain parts of the tree space — can run on more sequences,
but often not for current-day datasets.

Heuristics: cannot guarantee to find the optimal tree, but are at least
able to analyze large datasets.
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Build up a tree: Stepwise Insertion

A B
e <
e D C
’
]
1 B A B
A—‘<‘--> >—<
] C D
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B D
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Build up a tree: Stepwise Insertion
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Build up a tree: Stepwise Insertion
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Build up a tree: Stepwise Insertion
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Build up a tree: Stepwise Insertion

A B
E
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e S R S
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" c B AN c )
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>—< E D A E
A B
-3920.21 -4610.40 -4579.17

Is also used for other (non-ML) methods like parsimony.
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Local Maxima

What if we have multiple maxima in the likelihood surface?
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Local Maxima

What if we have multiple maxima in the likelihood surface?
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Tree rearrangements to escape local maxima.
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Tree Rearrangements: Scanning a Tree's Neighborhood

full tree

From a current tree construct other trees by rearranging its subtrees and
evaluates all resulting trees. Repeat with the best tree found, until no better tree
can be found. This also used for other (non-ML) methods, like parsimony.
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Tree Rearrangements: Scanning a Tree's Neighborhood

full tree

H

Nearest Neighbor Interchange (NNI)
O(n) NNI trees

From a current tree construct other trees by rearranging its subtrees and
evaluates all resulting trees. Repeat with the best tree found, until no better tree
can be found. This also used for other (non-ML) methods, like parsimony.
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Tree Rearrangements: Scanning a Tree's Neighborhood

full tree
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Nearest Neighbor Interchange (NNI)
O(n) NNI trees

From a current tree construct other trees by rearranging its subtrees and
evaluates all resulting trees. Repeat with the best tree found, until no better tree
can be found. This also used for other (non-ML) methods, like parsimony.
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Tree Rearrangements: Scanning a Tree's Neighborhood

full tree

|
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Nearest Neighbor Interchange (NNI) Subtree Pruning + Regrafting (SPR)
O(n) NNI trees 0O(n?2) SPR trees

/%ﬁ\‘ Q%

From a current tree construct other trees by rearranging its subtrees and
evaluates all resulting trees. Repeat with the best tree found, until no better tree
can be found. This also used for other (non-ML) methods, like parsimony.
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Tree Rearrangements: Scanning a Tree's Neighborhood
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From a current tree construct other trees by rearranging its subtrees and
evaluates all resulting trees. Repeat with the best tree found, until no better tree
can be found. This also used for other (non-ML) methods, like parsimony.
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Tree Rearrangements: Scanning a Tree's Neighborhood

full tree
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Nearest Neighbor Interchange (NNI) Subtree Pruning + Regrafting (SPR) Tree—-Bisection + Reconnection (TBR)
O(n) NNI trees 0O(n?2) SPR trees O(n3) TBR trees

From a current tree construct other trees by rearranging its subtrees and
evaluates all resulting trees. Repeat with the best tree found, until no better tree
can be found. This also used for other (non-ML) methods, like parsimony.
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How reliable is the reconstructed tree:

@ Usually programs deliver a single (best) tree, but without confidence
values for the subtrees.

@ How can we assess reliability for the subtree?
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Bootstrap and Consensus Tree

@ Bootstrapping creates many pseudo-alignments by sampling
alignment columns with replacement from the original alignment.

@ From the pseudo-alignment we reconstruct trees.
@ From the trees we collect and count all splits.

@ From the splits we construct a consensus tree.

o Definition: A split A|B in the tree is the bipartition of the
leaves/taxa into two subsets A and B induced by removing an edge or
branch from the tree.

e Definition: Two splits A|B and C|D are compatible, i.e. not
contradictory, if at least one intersection of ANC, AND, BN C,
BN D is empty.
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Alignment |- -

. .AGGCUCCARA. .
AGGUUCGAAA. .
. .AGCCCCGARA. .
. .AUUUCCGAAC. .

A D

B F



Estimating Confidence: The Bootstrap

= = = Alignment

T ~» Sample 1

. .AGGCUCCARA. .
. .AGGUUCGARA. .
. .AGCCCCGARA. .
. .AUUUCCGAAC. .

.AGGGGUCARA. .
.AGGGGUCARA. .
.AGGGCCCARA. .
.AUUUUCCACC. .

RN Sample 2

.GGGUUUUCAA. .
.GGGUUUUGAA. .
.GCCCCCCGRA. .
.UUUCCCCGRA. .

Y- Sample x

.AGUUCCAARA. .
.AGUUCCAARA. .
.ACCCCCAARAA. .
.AUCCCCAACC. .

B

F

A Short Introduction To Likelihood in Phylogenetics



Estimating Confidence: The Bootstrap
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Estimating Confidence: The Bootstrap
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Summarizing Trees: Consensus Methods

A D
AB|CDEF
B E
ABC|DEF
c Tree A F
A D
ACIBDEF
C E l
ABC|DEF
B TreeB F
A D
AC|BDEF
g  ABCIDEF
ABCDI|EF
B TreeC F

@ Strict consensus: contains all splits occuring in all input tree.

@ Semi-strict consensus: contains all splits which are not contradicted
by any tree.

@ Majority consensus M,: contains all splits which occur in more than ¢
input trees, where ¢ > 50% typically exactly 50%.
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Summarizing Trees: Consensus Methods

A D
AB|CDEF
B E
ABC|DEF
c Tree A F
A D ABC|DEF - 3 (100%)
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E > 0
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A D
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B Tree C F
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Summarizing Trees: Consensus Methods

A D A °
AB|CDEF strict consensus
B £ ABCIDEF B E
ABC|DEF
c Tree A F ¢ i
A D ABC|DEF - 3 (100%)
AC|BDEF AC|BDEF - 2 (66.7%)
E > 0
ABCIDEF AB|CDEF - 1 (33.3%)
ABCD|EF - 1 (33.3%
Tree B F | ( )
A D
AC|BDEF
g ABCIDEF
ABCD|EF
B Tree C F

@ Strict consensus: contains all splits occuring in all input tree.

@ Semi-strict consensus: contains all splits which are not contradicted
by any tree.

@ Majority consensus M,: contains all splits which occur in more than ¢
input trees, where ¢ > 50% typically exactly 50%.
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Summarizing Trees: Consensus Methods

A D
AB|CDEF

B E
ABC|DEF

c Tree A F

A D
AC|BDEF

E
ABC|DEF

Tree B F

A D
AC|BDEF
g ABCIDEF
ABCD|EF

B Tree C F

A D
strict consensus

ABC|DEF B E

F

ABC|DEF - 3 (100%) cemi-stict c D
AC|BDEF - 2 (66.7%)

— ABC|DEF A E
AB|CDEF - 1 (33.3%)

ABCD|EF
ABCDIEF - 1 (33.3%) B =

@ Strict consensus: contains all splits occuring in all input tree.

@ Semi-strict consensus: contains all splits which are not contradicted

by any tree.

@ Majority consensus M,: contains all splits which occur in more than ¢
input trees, where ¢ > 50% typically exactly 50%.
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Summarizing Trees: Consensus Methods

A D
B E
c Tree A F
A D
E

Tree B F

A D
E

B Tree C F

AB|CDEF

ABC|DEF

AC|BDEF
ABC|DEF

AC|BDEF
ABC|DEF
ABCDI|EF

ABC|DEF - 3 (100%)
AC|BDEF - 2 (66.7%)
AB|CDEF - 1 (33.3%)
ABCDIEF - 1 (33.3%)

—

strict consensus
ABC|DEF

semi-strict
ABC|DEF
ABCD|EF

majority-rule
AC|BDEF
ABC|DEF

A D
B E

F

D
A E
B F
A D
c E
B F

@ Strict consensus: contains all splits occuring in all input tree.

@ Semi-strict consensus: contains all splits which are not contradicted
by any tree.

@ Majority consensus M,: contains all splits which occur in more than ¢
input trees, where ¢ > 50% typically exactly 50%.
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Bayesian Phylogenetics

The Bayesian approach asks the right question in a hypothesis testing
procedure, namely, "What is the probability that this hypothesis is true,
given the data?" rather than the classical approach, which asks a question
like, " Assuming that this hypothesis is true, what is the probability of the
observed data?”

Ewens & Grant: Statistical Methods in Bioinformatics (2010)
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Bayesian statistics

Bayesian statistics tries to determine the probability of the hypothesis:

Pr(hypothesis) x Pr(data|hypothesis)

Pr(hypothesis|data) = Pr(data)

where
o Pr
e Pr
e Pr
e Pr

data|hypothesis) is the 'likelihood’
hypothesis) is the prior distribution
hypothesis|data) is the posterior distribution

—_~ o~ o~ o~

data) is the marginal likelihood
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Bayesian Phylogenetics

Bayesian statistics tries to determine the probability of the hypothesis (i.e.
tree topologies, branch lengths, evolutionary model with its parameters):

_ p(T) x p(M) x Pr(D|T, M)

p(T, M|D) o

where
e Pr(D|T, M) is the 'likelihood’
p(T) is the prior distribution on the trees

p(M) is the prior distribution on the evolutionary model
Pr(T, M|data) is the posterior distribution
Pr(D) is the marginal likelihood of the data

e o o
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Bayesian Phylogenetics

Bayesian statistics tries to determine the probability of the hypothesis (i.e.
tree topologies, branch lengths, evolutionary model with its parameters):

_ p(T) x p(M) x Pr(D|T, M)

p(T, M|D) o

where
e Pr(D|T, M) is the 'likelihood’
p(T) is the prior distribution on the trees

p(M) is the prior distribution on the evolutionary model
Pr(T, M|data) is the posterior distribution
Pr(D) is the marginal likelihood of the data

The output of a Bayesian evolutionary analysis is a probability
distribution on trees and parameter values.

e 6 o6 o
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