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Genome-scale Reconstruction of Metabolic Networks

Figure from Lee KY et al (2010), Microbial Cell Factories 9:94 | doi:10.1186/1475-2859-9-94
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Phylogenetic tree of metabolic reconstractions

Our metabolic knowledge is srongly biased towards cultivatable bacteria.

Figure from Oberhardt MA et al (2009) Mol Syst Biol 5:320 | doi:10.1038/msb.2009.77
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Chemical Reactions and Stoichiometry
Educt(s) are found left and product(s) right of the reaction
arrow.

2 Ag + 1 S 1 Ag2S

4 Fe + 3 O2 2 Fe2O3

1 C6H6O2 2 C6H5OH + 2 CO2

i∑

k=1

|νk | · Xk

m∑

k=i+1

|νk | · Xk

The νk ’s are integer values called stoichiometric coefficients.

By convention:

νk =





> 0 if compound is formed by reaction
< 0 if compound is consumed by reaction
= 0 otherwise

Note that the stochiometric coeffitionts are constants and do not depend on reaction conditions such as temperature,
pressure, pH, . . .

4 / 39

Stoichiometric Matrix S
It is convenient to handle sets of chemical reactions, composing a
reaction network, in matrix form.

Connectivity
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Compound

Stoichiometric Coefficient

The rows correspond to chemical compounds,
and columns to reactions.
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Examples: Stoichiometric Matrix

2A −−→ 3B

1A + 1B −−→ 1A + 1C

S =



−2 0

3 −1
0 1




B

CA

2

3

2A + B −−→ A + C

C −−→ A + B

S =



−1 1
−1 1

1 −1




A

B

C
2

The three representations are equivalent apart from catalysts.
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Genome-scale Stoichiometric Matrix
are sparse objects.

Figure modified from Palsson, BØ (2015), Systems Biology: Constraint-based Reconstruction and Analysis, ISBN

978-1-107-03885-1
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What is a Biological Pathway?

S =




s11 s12 . . . s1n

s21 s22 . . . s2n
...

...
. . .

...
sm1 sm2 . . . smn




1 Mathematical description of what a pathway is.

2 Formalism to describe mass flows in the network.

Wanted: All minimal sets of reaction, which
can operate at steady state and respect reaction directions.

Such a set is call an elementary pathway.
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The stoichiometric Matrix is a linear Operator
2A+B → C +A

C → A+B

2

ρ2

ρ1
CB

A

0 0

Col(S)Row(S)

Null(S) Left null(S)

v dx/dt

RR
S

mXn mn

v

vss

dyn

Reaction velocity Domain Concentration Domain

d

dt
~[X ] = S · ~J =

d

dt




[A]
[B]
[C]


 =




−1 1
−1 1
1 −1


 ·

(
kρ1 [A]

2[B]
kρ2 [C]

)

[Ȧ] = kρ2 · [C ]− kρ1 · [A]2 · [B]

[Ḃ] = kρ2 · [C ]− kρ1 · [A]2 · [B]

[Ċ ] = kρ1 · [A]2 · [B]− kρ2 · [C ]
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Linear transformations between (vector) spaces

Fre
que

ncy
 Do

mai
n

Time Domain

fre
que

ncy

time

0 0

Col(S)Row(S)

Null(S) Left null(S)

v dx/dt

RR
S

mXn mn

v

vss

dyn

d

dt
~x = S · ~v

S as linear transformation
from ~v to d~x/dt.

• Flux domain
Row space
Null space.

• Conc. domain
Column space
Left null space.

A probably familiar linear operator is the Fourier transform switching between time and frequency domain of a signal.
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Singular Value Decomposition (SVD)

S = U ·Σ · VT
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m x n

n x n

Row space

Null space

r x n=

S =
r∑

i=1

σi · (ui · vTi )

1 Row space contains all dynamic flux distributions.

2 Null space contains all steady-state flux distributions.

3 Column space contains all time derivatives of the conc. vector.

4 Left null space contains all conservation relationships.

r is the rank of S , i.e. the number of linear-independent row or column vectors

11 / 39



Example: SVD of a Reversible Reaction

A
r1
r2

B

N =

(
−1 1

1 −1

)
=

1√
2
·
(
−1 1

1 1

)

︸ ︷︷ ︸
U

·
(

2 0
0 0

)

︸ ︷︷ ︸
Σ

·
(

1 −1
1 1

)
· 1√

2︸ ︷︷ ︸
VT

Relation between the 4 fundamental sub-spaces (Row(N), Null(N), Col(N), lNull(N)) of the stoichiometric matrix
N with rank r = 1. Figure adapted from Palsson BØ Systems Biology – Properties of reconstructed networks.
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The Kernel Matrix K is a Null Space Basis
In steady-state the differential change in species concentrations
vanishes

d

dt
~[X ] = ~0 = S · ~J

Non-trivial solutions for the flux vector ~J exists only if there are
linear dependencies between columns of S

Rang(S) < number of reactions

These vectors which span the null space of S are most
conveniently organized in a kernel matrix K.

• Each column vector ~ki of K solves S · ~k = 0

• Any admissible flux in steady-state can be written as
a linear combination of vectors ~ki

~J =
∑

i

αi · ~ki
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Orthonormal Null Space Basis cannot be Interpreted!

B

A
C

D

B

A
C

D

S =




1 −1 0 0 −1 0
0 1 −1 0 0 0
0 0 1 −1 0 1
0 0 0 0 1 −1


K =




1 0
1 −1
1 −1
1 0
0 1
0 1




K′ =




1 1
1 0
1 0
1 1
0 1
0 1




• K is not interpretable in chemically meaningful terms.

• Flux through elementary reactions must be positive.

• Non-negative basis vectors are required.

• A convex basis has proven useful for this goal.
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Hybrid orbitals: are a basis change!

sp3-Hybrid Orbital

tetrahedral Geometry

Linear combinations (hybrid orbitals) of H 1s atomic orbitals that
match nodal properties of C 2p atomic orbitals to understand the
tetrahedral geometry of methane.

Figure by MIT OpenCourseWare
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Double Description Method for Basis Change
A pair (A,R) of real matrices A and R is said to be a double
description pair if the following relationship holds

Ax ≥ 0 if and only if x = Rλ for some λ ≥ 0

A is the representation matrix,
(implicit description by constraints) ,
R is the generating matrix
(explicit description by the edges)

of a polyhedral cone P.

Geometrically, the columns of a minimal generating matrix R are in
a 1-to-1 correspondence with the extreme rays of P.

An iterative procedure inizializing R with K is used to transform
the ortho-normal to a convex basis respecting reaction directions.
Gagneur J and Klamt S, (2004) Computation of elementary modes: a unifying framework and the new binary
approach, BMC Bioinformatics 5:175 | doi:10.1186/1471-2105-5-175
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Properties of linear and convex bases

Linear Space

• A · ~x = ~0.

• Set of linearly independent
basis vectors (~ei ).

~v =
∑

wi~ei
with wi ∈ [−∞,+∞]

• Unique representation of
every point.

• |~ei | = dim(null(S)).

• Infinit number of spanning
bases.

Convex Space

• A · ~x = ~0 with ~x ≥ ~0.

• Set of conically independent
generating vectors (~pi ).

~v =
∑
αi~pi

with αi ∈ [0,+ inf]

• Nonunique representation
of every point.

• |~pi | ≥ dim(null(S)).

• Unique set of generating
vectors.
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Enzyme Mechanism: Unordered Substrate Binding

R1 : ∅ 
 A
R2 : ∅ 
 B
R3 : C → ∅
R4 : E + A 
 EA
R5 : E + B 
 EB
R6 : EA + B 
 EAB
R7 : EB + A 
 EAB
R8 : EAB → E + C

EB

B

E EAB C

A

EA

∅

∅

∅

R5 R7

R8

R4 R6

S =




1 0 0 −1 0 0 −1 0
0 1 0 0 −1 −1 0 0
0 0 −1 0 0 0 0 1
0 0 0 −1 −1 0 0 1
0 0 0 1 0 −1 0 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 1 −1




Engl HW et al (2009), Inverse Problems 25:123014 | doi:10.1088/0266-5611/25/12/123014
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Enzyme Mechanism: Elementary Modes

EB

B

E EAB C

A

EA

∅

∅

∅

R5 R7

R8

R4 R6

EB

B

E EAB C

A

EA

∅

∅

∅

R5 R7

R8

R4 R6

EB

B

E EAB C

A

EA

∅

∅

∅

R5 R7

R8

R4 R6

K′ =




1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 −1
0 1 −1 1
1 0 1 −1
0 1 −1 1
1 1 0 0




Engl HW et al (2009), Inverse Problems 25:123014 | doi:10.1088/0266-5611/25/12/123014
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Elementary modes of TCA in E. coli
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Schuster S et al (1999), Trends Biotechnol 17:53-60 | doi:10.1016/S0167-7799(98)01290-6
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Narrowing the Flux Cone: The simple flux split

v1, max
= 6

v
2, max

= 8

v
3, max

= 10 A

S =



−1
−1

1


K =




1 0
0 1
1 1




Physico-chemical constrains are required to confine the solution
space to functional states the network can achieve.

Price ND et al, (2004) Uniform Sampling of Steady-State Flux Spaces: Means to Design Experiments and to Interpret
Enzymopathies, Biophys J 87(4):2172-2186 | 10.1529/biophysj.104.043000
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Metabolic Flux Analysis (MFA)

normal growth condition. Lys-production condition.

The goal of MFA is the quantitative description of cellular fluxes.

Figure adapted from Marx A, Bestimmung des Kohlenstoffflusses im Zentralstoffwechsel von Corynebacterium glu-
tamicum mittels 13C-Isotopenanalyse, PhD-thesis Uni Düsseldorf (1997).
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Fail cases for Metabolic Flux Analysis (MFA)

• parallel pathways without any related flux measurement.

• certain metabolic cycles.

• bi-directional reaction steps.

• split pathways when cofactors are not balanced.

Figure adapted from [Wiechert, 2001]
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Many Flux Distributions for the same “optimal” yield

Core metabolic network of E. coli (56 compounds, 64 reactions, 2598
extreme pathways).

The optimal value for SUC production (0.86 mol/mol) from FUM can be
achieved by 88 different flux distributions!
(Note: any non-negative linear combination is optimal as well)
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Finding the “Best” Flux Distribution

An objective function is required to pick out particular solutions
with desired properties from the bounded null space.

Figure from Palsson, BØ Systems Biology, Properties of Reconstructed Networks, Cambridge University Press,
ISBN-13 978-0-521-85903-5
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Flux Balance Analysis

Formulate as an linear programing problem with additional
constraints (capacity of enzymes, external fluxes, . . . ) and an
appropriate optimization function.

Obj Function Explanation

max vBiomass
vGlucose

biomass yield (same as groth rate)

max vATP
vGlucose

ATP yield

min
∑

vNADH

vGlucose
redox potential

min
∑
δi reaction steps

max vBiomass∑
v2
i

biomass yield per flux unit

Schuetz R et al (2007), Systematic evaluation of objective functions for predicting intracellular fluxes in E. coli,
Mol Sys Biol 3:119 | doi:10.1038/msb4100162
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A Simple Example

b1 b2

v1

v2

v2

v1

v1, max

v2, max

BA

NADH

ATP

The flux balance for this system is v1 + v2 = b1 (= b2).

v1, v2 ≥ 0 constrains the solution space to a line segment.

Maximizing ATP or NADH production lie at the end of the line.

Example modified from Bonarius HPJ et al (1997), Flux analysis of underdetermined metabolic networks: the quest
for the missing constraints, Trends Biotech 15(8):308-314 | doi:10.1016/S0167-7799(97)01067-6
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Primer: Linear Programming (LP)

Linear programming is an optimization method requiring 2 inputs:

1 A linear objective function.

2 A set of linear constraints.

Example: Production planning problem

Product machine 1 machine 2 machine 3

A 40 24 0
B 24 48 60

Total machine running time is 8 hours/day.
Profit: 10 e/A and 40 e/B.

Question: How many units of product A and B need to be
manifactured in order to maximize profit?
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Expressed as LP Problem

1 maximize profit:

z = F (x1, x2) = 10 · x1 + 40 · x2

2 subject to the linear constraints:

40 · x1 + 24 · x2 ≤ 480
24 · x1 + 48 · x2 ≤ 480

60 · x2 ≤ 480
x1, x2 ≥ 0

Admissible solutions:

• x1 = 0 ∧ x2 = 0 =⇒ z = 0

• x2 = 0 y x1 = 12 =⇒ z = 120

• x1 = 0 y x2 = 8 =⇒ z = 320
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LP Problem: Graphical Solution

0 5 10 15 20

X
1

0

5

10

15

20

X
2

40 · x1 + 24 · x2 ≤ 480 ⇐⇒ x2 ≤ −5
3 · x1 + 20

24 · x1 + 48 · x2 ≤ 480 ⇐⇒ x2 ≤ −1
2 · x1 + 10

60 · x2 ≤ 480 ⇐⇒ x2 ≤ 8

z = 10 · x1 + 40 · x2 ⇐⇒ x2 = −1
4 · x1 + 1

40 · z
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LP Problem: Formal Formulation

The linear objective function is generally a sum of terms that
contain weighted measurable elements from a metabolic model.

Maximize:
Z = c1 · x1 + c2 · x2 + · · · = cT · x

Subject to:

a11 · x1 + a12 · x2+ · · · a1n · xn ≤ b1

a12 · x1 + a22 · x2+ · · · a2n · xn ≤ b2
...

...
am1 · x1 + am2 · x2+ · · · amn · xn ≤ bm

A · x ≤ b
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How to measure Fluxes experimentally?

Metabolic fluxes can not be measured directly but must be inferred
from isotopomere patterns.

Sauer, U (2006), Metabolic network in motion: 13C-based flux analysis, Mol Sys Biol 2:62 |
doi:10.1038/msb4100109
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Direct determination of metabolic flux

M*

M
J J

dM

dt
= −

(
M?

M

)
· J

J and M are constant due to metabolic steady-state therefore
integration gives

log

(
M?(t)

M?(0)

)
= − J

M
· t

Hence the unknown flux J can be determined from a semilog plot
of “radioactive” counts versus time.

Requirements: (1) M? be transported into the cell (2) intensity of M? be measurable as a function of time.
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Isotopomers

Are defined as isomeres of a metabolit that differ only in the
labeling state of their individual atoms
(e.g. carbon [12C, 13C], hydrogen [1H, 2H] or oxygen [16O, 17O, 18O].

2N isotopomeres are possible for a metabolite with N atoms that
may be in one of two states (unlabeled or labeled).

Example (glucose C6H12O6)

Atoms # of Isotopomeres

C 6.400× 101 (26 = 64)
O 7.260× 102 (36 = 726)
H 4.096× 103 (212 = 4096)
C, H 2.621× 105 (26 × 212 = 262144)
C, H, O 1.911× 108 (26 × 212 × 36 = 191102976)
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Determination of Flux Split Ratios

Method works only at both metabolic and isotopic steady state.
In isotopic steady state the relative population all the isotopomeres
of a metabolite is constant.

1 A is a six carbon compound whose first atom is labeled.

2 Competing/alternative pathways must introduce asymmetries.

3 The pathway via intermediate B produces unlabeled C .

4 Via the “direct” pathway the label is retained.

5 The label enrichment in C is directly proportional to the rate
of ν2 relative to the total rate of A consumtion (ν1 + ν2).

35 / 39



Measuring Isotopomere Distribution

Any experimental technique capable of detecting differences
between isotopomeres can be used to measure the labeling state.

The two dominating technologies are:

1 Nuclear magnetic resonance spectroskopy (NMR).

2 Mass spectrometry (MS).

Figure adapted from [Wiechert, 2001]
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Atom Transition Network
Estimating fluxes from isotopomere patterns is an inverse problem.

The atom-atom mapping
between reaction educts and
products must be known.

Getting this information is an
NP-hard problem.

Therefore most approaches use a heuristic optimization principle e.g.

“minimal chemical distance”.
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9

Chen WL, Chen DZ, Taylor KT (2013) Automatic reaction mapping and reaction center detection. WIREs Comput
Mol Sci | doi:10.1002/wcms.1140
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Degeneracy of Atom-Atom Mappings
Increasing degeneracy:

• Rotational symmetric
molecules.

• Equivalence of oxygen
atoms in carboxyl or
phosphate groups.

Restricting degeneracy:

• Prochiral carbone
centers.

• Molecules with a
center of inversion
but lacking of a
rotational axis.

Ravikirthi P et al (2011), Construction of an E. Coli Genome-Scale Atom Mapping Model for MFA Calculations,
Biotechnol Bioeng 108:1372-1382 | doi:10.1002/bit.23070
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