

When is computational modeling useful ?

Simulation can replace or complement the experiment:

1. Experiment is impossible

Inside of stars Weather forecast

- 2. Experiment is too dangerous
- 3. Experiment is expensive
- 4. Experiment is blind

Modern Bioinformatics

ROK

Flight simulation Explosion simulation

High pressure simulation Windchannel simulation Trial and error drug design

Some properties cannot be observed on very short timescales and very small spacescales

 Every conformation is associated with an energy, as a function of the positions of all particles, q = (x₁,y₁,z₁,x₂,y₂,z₂,...)

 $\mathsf{E} = \mathsf{f}(\mathbf{q}) = \mathsf{f}(\mathsf{x}_1, \mathsf{y}_1, \mathsf{z}_1, \mathsf{x}_2, \mathsf{y}_2, \mathsf{z}_2, \dots)$

 Compare q to a point on a multi-dimensional energy surface (3N-6)-dimensional

Modern Bioinformatics

- Minima are favourable conformations
- Saddel points are transition states

- Proteins are too large systems to simulate the slow folding process.
- Smaller model compounds can be correctly folded on the computer.
- ⇒ Information about folding mechanisms and the unfolded state

Molecular dynamics

- 1. Start at a certain conformation with initial velocities
- 2. Calculate the energy and the force on every atom i:

$$\vec{F}_i = -\vec{\nabla}_i E^{pot}(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N)$$

- 3. From the force (acceleration) update velocity for every atom
- 4. From the velocity update the position
- 5. Propagate through time

Modern Bioinformatics

REKL

- Total energy E^{tot} = E^{pot} + E^{kin} is conserved (class. mech.)
- Kinetic energy allows us to go over barriers
- If we simulate infinitely long, we get the NVE ensemble

Forces from a force field

 The force on an atom is given by the derivative of the potential energy, with respect to its coordinates.

Modern Bioinformatics

BOX

U is given by a force field, with relatively simple functions. The derivatives can be calculated analytically

For simple systems (harmonic oscillator) the equations of motion may be solved exactly: in all other cases we need to solve them numerically

Molecular dynamics simulations

Inner life of the cell

Outline

- Modeling and simulation
- Calculation of free energies

Processes: Thermodynamic Equilibria

Definitions

free energy

The driving force for all physical processes Free energy ΔA ; Free enthalpy $\Delta G (= \Delta A + p \Delta V)$

energy

Modern Bioinformatics

BOX

The internal energy of the systemsEnergy $\Delta E/\Delta U$;Enthalpy ΔH (= ΔE + p ΔV)

entropy

"The number of realization possibilities" Entropy ΔS

Helmholtz / Gibbs equations

 $\Delta A = \Delta E - T \Delta S;$

 $\Delta G = \Delta H - T \Delta S$

Conformational entropy calculated using Schlitter's formula

- Netropsin and Distamycin A
- In solution and when bound to DNA

	S_{free}	S_{bound}	ΔS_{bind}
Netropsin	862	735	-127
Distamycin	902	798	-104

in J/K/mol

Modern Bioinformatics

BOX(I

Entropy loss mostly in the tails of the molecules

Binding to multiple structures

- Docking of 65 substrates in 2500 protein CYP2D6 structures
- Side-chain of Phe483 occupies multiple conformational states

J. Med. Chem. 51 (2008) 7469 - 7477

Example: DAAO inhibitors

Three inhibitors of the enzyme D-amino acid oxidase were studied

Modern Bioinformatics

80 (U

Molecular dynamics simulations of the ligands in solution and bound to the protein, using GROMOS (parameter set 45A4)

Free in solution 9.98 8.47 7.60 water is being releading releadin	being releas
In complex: Tyr228 OH 1.00 1.00 Arg283 HE 1.03 0.99 1.00 Arg283 HH 1.28 1.35 1.34 Gly313 0.91 0.50 0.50 H ₂ O 2.15 1.87 0.61 water still plays a r	till plays a ro
Tyr228 OH 1.00 1.00 1.00 Arg283 HE 1.03 0.99 1.00 Arg283 HH 1.28 1.35 1.34 Gly313 0.91 0.50 0.50 H ₂ O 2.15 1.87 0.61 water still plays a r	till plays a ro
Arg283 HE1.030.991.00Arg283 HH1.281.351.34Gly3130.910.500.50H2O2.151.870.61	till plays a ro
Arg283 HH1.281.351.34Gly3130.910.500.50H2O2.151.870.61water still plays a r	till plays a ro
Gly3130.910.500.50H2O2.151.870.61water still plays a r	till plays a ro
H_{2O} 2.15 1.87 0.61 water still plays a r	till plays a ro
Loss of H-bond 3.61 2.76 3.15	
Entropy (kJ/mol)	
calculated conformational entropy full entropy	X
$-T\Delta S(3)$ 15.3 17.0 -5.0	
-TΔS (4) 15.1 3.3 -15.9	
H H	N 002

Definitions

free energy

$$A(N,V,T) = -k_B T \ln \left[N! h^{3N} \right]^{-1} \iint \exp\left(-H(\vec{p},\vec{r}) / k_B T\right) d\vec{p} d\vec{r}$$
$$= U - TS$$

energy

Modern Bioinformatics

BO KI

$$U(N,V,T) = \left(\frac{\partial A/T}{\partial 1/T}\right)_{N,V} = \left\langle H(,) \right\rangle_{\vec{p},\vec{r}}$$

entropy

$$S(N,V,T) = -\left(\frac{\partial A}{\partial T}\right)_{N,V} = \frac{U-A}{T}$$

Partition function

$$Z(N,V,T) = \left[N!h^{3N}\right]^{-1} \iint \exp\left(-H(\vec{p},\vec{r}) / k_{B}T\right) d\vec{p}d\vec{r}$$

Free energy, energy and entropy are defined from statistical thermodynamics

Zwanzig, J. Chem. Phys (1954) 22:1420

Example: DAAO inhibitors

Three inhibitors of the enzyme D-amino acid oxidase were studied up on the enzyme D-amino acid oxidase were studied up oxidase were studied up

	N N CO	0 ₂ н	CC
	1	3 4	X = O X = S
	3->1	3->4	4->1
Calculated va	alues:		
ΔG_{free}	106.3 ±1.5	86.1 ±0.8	20.4 ±1.
$\Delta G_{\text{complex}}$	113.8 ± 2.2	87.3 ±3.5	36.7 ±2.
$\Delta\!\Delta G_{\text{bind}}$	7.5 ± 3.7	1.2 ± 4.3	16.3 ± 3
Experimental	$\Delta\!\Delta G_{\textit{bind}}$ based on:		
IC ₅₀ ^a	8.2	-0.9	9.1
IC ₅₀ ^b	4.6	0.1	4.6
ITC	9.4	0.8	8.6
SPR⁰	14.1	1.6	12.4

Modern Bioinformatics

Overall, the relative binding free energies are very well reproduced

J.H.M. Lange, J. Venhorst, M.J.P. van Dongen, J. Frankena, F. Bassissi, N.M.W.J. de Bruin, C. den Besten, S.B.A. de Beer, C. Oostenbrink, N. Markova and C.G. Kruse, *Eur. J. Med. Chem.* (2011) **46**, 4808 - 4819

- Relative free energy of three compounds
- In three different media (vacuum, solution, protein)
- In 11 discrete steps, forward and backward TI

Table 4.	TI Results	(kJ mol	$^{-1})^{a}$
----------	-------------------	---------	--------------

Modern Bioinformatics

		DES 🗲	► E2		DES ↔ (GEN
TI	for- ward	back- ward	hysteresis	for- ward	back- ward	hysteresis
vacuum solvent protein $\Delta\Delta G_{solv}$ $\Delta\Delta G_{bind}$ (expt)	76.3 79.0 80.4 2.8 <u>1.4</u> 3. 0.7	$ \begin{array}{c} 76.1 \\ 81.6 \\ 78.2 \\ 5.5 \\ -3.4 \\ 8^{b} \\ 79^{c} \end{array} $	$0.2 \\ -2.6 \\ 2.2 \\ -2.7 \\ 4.8$	$187.1 \\ 151.5 \\ 173.1 \\ -35.6 \\ 21.6 \\ 11 \\ 21.$	$ \begin{array}{c} 186.9\\ 157.3\\ 165.3\\ -29.5\\ \underline{8.0}\\ .3^{b}\\ 69^{c} \end{array} $	$0.2 \\ -5.8 \\ 7.8 \\ -6.0 \\ 13.6$

Using the one step perturbation

- Simulate a reference molecule
 - Sugar-base interaction soft
 - 8-substituent soft with everything else
 - Apply perturbation formula to project back to real molecules
- Reproduce

Modern Bioinformatics

80 ((

- experimental preference
- ³J-value for GTP
- (Exp:2.5/2.6/2.6/3.5 Hz Calc:2.42 Hz)
- OSP for 5 compounds
 - In different media
 - Relative free energy of solvation
 - Relative LogP values

Free energies of solvation

Both conformations contribute significantly

Modern Bioinformatics

The overall value does not follow intuitively from the values in one conformation

	$\Delta\Delta G_{AB}^{anti}(solv)$	$\Delta\Delta G_{AB}^{syn}(solv)$	$\Delta\Delta G_{AB}(solv)$
GTP	0	0	0
8-F-GTP	4.0	4.5	5.8
8-CI-GTP	4.3	4.4	7.3
8-Br-GTP	1.4	0.4	4.1
8-CH ₃ -GTP	4.0	4.6	8.2

Conformational restriction

• Free energy of restricting the analogs in water to the conformations observed in the protein

	$\left[\langle -140^{\circ}, -90^{\circ} \rangle \right]_{(aq)}^{R}$	$\Delta G_R^{rest}(aq)$	$\Delta\Delta G_{GTP,R}^{rest}(aq)$	$\Delta\Delta G^{calc}_{GTP,R}(bind)$
GTP	50%	1.7	0.0	0.0
8-F-GTP	48%	1.8	0.1	-0.5
8-CI-GTP	18%	4.2	2.5	3.7
8-Br-GTP	3.3%	8.4	6.7	10.1
8-CH ₃ -GTF	P 4.0%	8.0	6.2	10.5

- The free energy of restricting the free energy explains 65% of the differences in binding free energies between the compounds
- Conformational selection of the ligand

Modern Bioinformatics

J. Hritz, T. Läppchen, C. Oostenbrink. Eur. Biophys. J. (2010) 29:1573

Sugita, Y.; Kitao, A.; Okamoto, Y. *J. Chem. Phys.* **113**, 6042–6051 (2000) Figure: A. Patriksson, D. van der Spoel, Phys. Chem. Chem. Phys., **10**, 2073 (2008)

Drazen Petrov and Bojan Zagrovic*

