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Abstract
Background: Stimulus Response Experiments to unravel the regulatory properties of metabolic
networks are becoming more and more popular. However, their ability to determine enzyme
kinetic parameters has proven to be limited with the presently available data. In metabolic flux
analysis, the use of 13C labeled substrates together with isotopomer modeling solved the problem
of underdetermined networks and increased the accuracy of flux estimations significantly.

Results: In this contribution, the idea of increasing the information content of the dynamic
experiment by adding 13C labeling is analyzed. For this purpose a small example network is studied
by simulation and statistical methods. Different scenarios regarding available measurements are
analyzed and compared to a non-labeled reference experiment. Sensitivity analysis revealed a
specific influence of the kinetic parameters on the labeling measurements. Statistical methods based
on parameter sensitivities and different measurement models are applied to assess the information
gain of the labeled stimulus response experiment.

Conclusion: It was found that the use of a (specifically) labeled substrate will significantly increase
the parameter estimation accuracy. An overall information gain of about a factor of six is observed
for the example network. The information gain is achieved from the specific influence of the kinetic
parameters towards the labeling measurements. This also leads to a significant decrease in
correlation of the kinetic parameters compared to an experiment without 13C-labeled substrate.

Background
The recent developments in Metabolomics and Fluxomics
open up new perspectives for detailed in vivo studies of the
cellular metabolism. Various experimental approaches
using GC- or LC-MS enable the measurement of intracel-
lular concentrations and isotope enrichments with
increasing accuracy. Nowadays, almost all metabolites of
the central carbon metabolism can be detected [1-3];

although not all can be quantified exactly. Metabolic
fluxes depend on the metabolite concentrations, enzyme
concentrations (regulated by transcription [4]) as well as
regulatory mechanisms (like enzyme modification [5]
and allosteric inhibition or activation [6]). Different
information about the in vivo mechanisms and fluxes can
be collected from already established experimental
approaches.
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Figure 1 depicts the most prominent approaches in Flux-
omics and Metabolomics and their information targets. In
general, experimental approaches can be divided into
metabolic stationary and metabolic nonstationary experi-
ments. Whereas metabolic stationary approaches aim to
quantify intracellular fluxes, nonstationary experiments
are used to identify reaction kinetic properties like sub-
strate affinities and allosteric inhibition. Fluxes at differ-
ent metabolic states can only be calculated from a reaction
kinetic model (with identified parameters). The following
approaches are currently established:

1. Metabolic Flux Analysis (left state in Figure 1): At met-
abolic steady state it is assumed, that the intracellular con-
centrations and fluxes are not changing during the time of
the analysis. A model based on mass balances is used to
quantify the flux through the network [7].

2. 13C Metabolic Flux Analysis (second left state in Figure
1): It is well known that solely stoichiometric balancing
will not lead to a resolution of bidirectional or parallel

fluxes [8]. Experiments with additional 13C labeled sub-
strates have been shown to increase the measurable infor-
mation and to enable the quantification of exchange
fluxes and parallel fluxes [9,10].

3. 13C Metabolic Flux Analysis at isotopically nonstation-
ary state (third state in Figure 1). Here the organism is kept
at metabolic stationary state while a 13C labeled substrate
pulse is applied. Only recently, Nöh et al. [11] have eval-
uated an experiment of this type. It was shown that the
duration of the labeling experiment can be drastically
reduced from several hours to the order of minutes.

4. Stimulus-Response Experiments (fourth state in Figure
1). At a metabolic nonstationary state the intracellular
concentrations (and consequently also the fluxes) are not
constant. These conditions target the identification of in
vivo enzyme kinetics with one single experiment. The cur-
rently most prominent approach in this field is given by
Stimulus-Response Experiments [12-15]. A culture is
driven to a substrate limited state and then excited by a

Category of experimentsFigure 1
Category of experiments. Overview of experiments used for the estimation of intracellular fluxes and enzyme kinetics. The 
new metabolic and isotopic nonstationary state is analyzed here within a simulation study.
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strong external stimulus, typically a substrate pulse. The
metabolic response of the cells is tracked by rapid sam-
pling on a sub-second timescale [16-18]. Although lots of
data is generated from a stimulus response experiment
[16,19], the approach has shown to be limited: still only
a part of the parameters can be identified. Even if the data
from several experiments is gathered, it is not possible to
determine all kinetic parameters [20].

These experiments are now common procedure. Yet miss-
ing is the experiment that results from a fusion of
approach 3 and 4, i.e. labeling the substrate in a metabol-
ically dynamic experiment. This type of experiment is the-
oretically analyzed to evaluate whether this type of
labeling experiment can increase the parameter estima-
tion accuracy of a reaction kinetic model. To this end, it is
first shown how the experiments can be modeled based
on the known concepts from 13C Flux Analysis and reac-
tion kinetic modeling. A series of papers [21-23] are con-
cerned with the integration of kinetic and isotopic
information. In contrast to the present integration, the
authors assumed most enzyme kinetic parameters to be
known. Moreover the system was analyzed in a metabolic
steady state and therefore resembles approaches 2 and 4
under the perquisite of mostly known kinetic parameters.
The values for these parameters are taken from literature
or additional experiments [23]. The approach presented
here is based on a dynamic experiment rather than one or
several metabolic steady states and all enzyme kinetic
parameters are to be estimated from the experimental
data.

The approach is based on a complete isotopomer model
that is capable of exploiting all available isotopomer
measurements from MS(/MS) or NMR devices. In order to
demonstrate the general mathematical framework a small
example reaction network is discussed the first time. Com-
paring the outcomes of an experiment with labeling to
those of a reference without the addition of 13C substrate
the information surplus from the metabolic and isotopic
transient state is elucidated. To cover different experimen-
tal settings, three scenarios of available measurements are
introduced and compared.

Modeling metabolic and isotopic nonstationary systems
A general model structure for metabolic and isotopic non-
stationary systems can be obtained by combining models
from both worlds. However, this hybrid structure also
inherits some standard assumptions from kinetic and iso-
topic models. Precisely, all upcoming equations are only
valid if the following assumptions [24] are accepted:

1. Homogeneity: All intracellular metabolites are distrib-
uted uniformly.

2. No isotopic effects: The enzymatic reactions are not
influenced by the labeling state of the metabolites.

3. Fast equilibrium of enzyme complexes: Intermediate
enzyme complexes rapidly reach equilibrium such that
the quasi-stationary assumption of Michaelis-Menten [6]
is valid.

Reaction kinetic model
With these assumptions, well known mechanistic or
approximate enzymatic rate laws like Michaelis-Menten
[6] can be used to describe the fluxes v in dependence of
substrate, product and effector concentrations, kinetic
parameters α (like vmax, KM) and external (experimental)
parameters β (like substrate feed):

v = v(c, α, β)

The concentrations of metabolites (c) do change depend-
ing on the in- and effluxes v. The mass balances of the
pools can be formulated using the well known stoichio-
metric matrix N [25]:

13C Balance equations
Here, the labeling state is modeled using the isotopomer
concept [24] to keep the contribution understandable on
a basic level. Nevertheless, more evolved but mathemati-
cally equivalent concepts like cumomers [26], bondomers
[27] or elementary metabolite units [28] can also be used.
A metabolite with n carbon atoms has 2n labeling states.
Thus, 2n isotopomer fractions are required for each metab-
olite to describe its labeling state. The overall isotopic
state of the network is described by a vector x containing
the isotopomer fractions of all metabolites. Isotopomer
dynamics of a metabolite pool depends on the pool con-
centration c, the input labeling xinp and the flux functions
v. The overall system for the labeling state is given by [29]:

Here, the operator  generates a diagonal matrix

composed of concentrations ci (with ni repetitions which

correspond to all isotopomer fractions, ni being the

number of isotopomers of metabolite i). The nonlinear
function f includes the stoichiometry of the isotopomer
transitions, the vector x describes the isotopomer distribu-
tion of the balanced intracellular pools (for an example
take a look at Eq. (14) in the example section) and xinp is
defined by the isotopomer fractions of the input substrate.

c N v c= ⋅ ( ), αα ββ,

c x f v c x x( ) ⋅ = ( )( ), αα ββ, , ,inp

c( )
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Notice that unlike in stationary isotopomer balances [30],
the vector v is not constant but changes over time in
dependence of the metabolite concentrations. Combining
both model equations (2) and (3), the metabolic and iso-
topic transients can now be completely described. Hence,
the resulting model is a hybrid of a classical 13C labeling
and a reaction kinetic model. The functions f is con-
structed based on matrix calculus as described earlier by
Wiechert et al [24] but replacing the vector v with a vector
of kinetic rate terms. A clear difference appears at the
point of solution; Instead of a numeric equation solver,
numeric integration is applied to calculate the labeling
transients.

Measurement model
The measurement model is a function that couples the
dynamic isotopomer model with the available measure-
ments. Within this section the measurement model will
be described only very briefly in order to avoid rather
unnecessary technical explanations (these can be found in
Appendix A). Generally, at time point tk measurements of
the labeling and the concentrations are expected. Both
quantities are gathered in the measurement vector y(tk)
that depends on the state of the system c(tk) and x(tk).
Hence, we introduce a measurement function g:

y(tk) = g(x(tk), c(tk)), k = 1,...,N

Collecting all sampling time points into a vector ξ =
(t1,...tN)T, Eq. (4) compactly reads:

A concrete function g is presented within the example
given in the appendix for massisotopomer measurements.

Parameter sensitivity
The final goal of the nonstationary experiment is the
determination of the kinetic parameters α. All other quan-
tities (fluxes v, concentrations c) follow from these
parameters. Sensitivities quantify the influence of α on
the model response, namely the concentration time
course c(t) and the isotopomer distributions x(t). Implicit
derivation of the differential equations (2) and (3) with
respect to the parameters α leads to the sensitivity differ-
ential equations associated with the model (2)–(3):

Besides the influence of the parameters α on the system
state, the influence on the expected measurements is now
easily calculated using the chain rule:

As shown in the following sections, the sensitivities are
essential for the statistical evaluation and comparison of
different experimental configurations [10].

Nonlinear regression model
Regression analysis is the chosen method to estimate the
kinetic parameters from the experimental data. Assuming
that the model adequately describes reality and that exper-
imental measurements y have some unknown error ε, Eq.
(5) extends to:

η(ξ) = g(x(ξ), c(ξ)) + ε(ξ)

Parameter estimation is performed by using weighted

least square minimization. Expecting that the errors ε(ξ)

are normally distributed with expectation E[ε(ξ)] = 0 and
the given measurement covariances are collected in the

measurement covariance matrix Σ, the weighted least
squares functional for the calculation of the optimal

parameters  reads [31]:

Various algorithms can be applied to solve this minimiza-
tion problem like derivation-free simplex methods [32],
evolutionary strategies [33], or gradient-based methods
[34].

Statistical evaluation

In order to obtain a statement about whether or not the
information contained in the measurements is sufficient
to identify the parameter values within a certain precision,
it is essential to analyze the accuracy of the parameter esti-

mation  found by solving Eq. (8). Assuming that the

estimate  is close to the real solution α* application of
linearized regression analysis is feasible. In experimental

design studies usually a parameter set  = α* is chosen. It
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is known, that linear statistics can produce imprecise esti-
mates of parameter confidence regions [35]. Nevertheless,
this tool still fulfils its purpose when it is used to compare
different experiments. Here the relative improvement of
the confidence regions is much more important than their
precise knowledge. Moreover, the concept of correlation
coefficients that characterizes the confidence regions is an
inherently linear concept. It will turn out that parameter
correlations are relevant because with 13C labeled sub-
strates parameter correlations strongly decrease that lead
to smaller confidence regions.

The covariance of the parameters  is calculated using the

derivative and the covariance of the measurements Σ by
[36]:

In the appendix section it is explained how the different
types of measurements and additional knowledge are
integrated.

Statistical measures to compare experiments

The parameter covariance matrix  contains all informa-
tion needed to judge the information gain of an experi-
ment, namely parameter standard deviations, correlations
and confidence regions. A drawback of using the covari-
ance matrix is its size. Even for small models it is rather
difficult to evaluate and compare experiments on its basis.
Therefore statistical measures are used that reduce the
complexity and facilitate an automated comparison of
experiments. Usually, a reference experiment is specified
to which all other experiments are compared.

A commonly used measure is the D-criterion, which is cal-
culated from the determinant of the covariance matrix. It
comprehensively summarizes the available parameter
information. To compare different experiments Möllney
et al. [10] propose to use a root of the D-criterion. The
scaled ratio ID between an experiment and the reference
experiment (index ref) is defined by:

Roughly speaking the ID value reflects an overall informa-
tion gain based on the volume of the covariance ellipsoid
(for details see [10]). The standard deviations and correla-
tions of the judged experiment are – on an average – ID
times smaller than those from the reference experiment.

However, this does not guarantee that every single stand-
ard deviation is improved.

Besides the D-criterion, the A-criterion is frequently
applied. The latter criterion reflects the mean of the diag-
onal elements of the covariance matrix. Again, a scaled
scalar is introduced to compare two experiments:

In contrast to the D-criterium, correlations between
parameters are not taken into account; the A-criterium is
based on the parameter variances only. Therefore, the
square root has to be taken.

An exploratory study
Within this section the described framework is applied to
an example network. As an example, some equations are
explicitly shown to facilitate the understanding of the pre-
sented concepts. Some different conceivable scenarios
regarding the available measurements are also introduced
to cover different measurement setups and analyze the
influence of, for example, a missing concentration meas-
urement.

Example network
The network chosen for this study is shown in Figure 2.
Although it is simple, it nonetheless reflects all typical
reaction mechanisms of the central carbon metabolism. A
linear reaction sequence (vupt, v1, v2) with a feedback
inhibited entry reaction (vupt) as well as a cyclic reaction
sequence (v3, v4) with some fillup reaction (v5) and an
exit (v6) is included. Some reversible reaction steps (v1, v5)
are incorporated as well as a bimolecular reaction step
(v2) with Hill-type kinetic mechanism and irreversible
split reactions (v3, v4) are present (see Table 1 for a com-
plete listing of reaction mechanisms and the kinetic
expressions).

The assumed metabolic regulation reflects some basic
principles like product inhibition (reaction vupt by A, v2 by
C) and allosteric inhibition (v4 by C). Short chain mole-
cules were chosen to keep the dimension of the iso-
topomer equations low. The substrate of the system
contains only 2 carbon atoms (Afeed) and the molecule
formed in the bimolecular reaction entering the cycle has
4 carbon atoms.

Isotopomer balance equations and simulation
Some assumptions about the experimental setup and the
network will be needed to perform the simulation study
of the nonstationary state: (1) the external influences β,
(2) assumptions about the reaction mechanisms that will

α̂α

cov − −( ) = 











1 1αα
αα αα

d
d

d
d

Ty yΣ

α̂α

I
D

D
DD = = ( )( )ref2dim( ) , det covαα αα

I
A

A
A

NA = ( ) = ( )( )ref traceˆ cov ˆαα αα1
Page 5 of 18
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:152 http://www.biomedcentral.com/1471-2105/9/152
form the functions v and (3) estimates for the unknown
kinetic parameters α.

The balance equations for the metabolite pools are not
shown here because they are well documented in litera-
ture [7]; five pools are balanced for the example network.
In total, 24 kinetic parameters are needed for the reaction
kinetics. In order to model the reactor feeding profile, one

input parameter ( ) is introduced. The values used

within this study are listed in Table 2. Having the balances
in hand, the time course of the concentrations c(t) is cal-
culated by integrating Eq. (2). Figure 3 shows the simula-
tion result. Concentrations of the metabolite pools A and
B show a short overshoot, while concentrations C, D and
E show a monotonic increase after the pulse. Pools A and
B rapidly reach a steady state after about 10 s, while the
dynamics in C, D and E do not reach a new steady state in
the given simulation time of 20 s.

The atom transitions have to be known to balance the iso-
topomer fractions (Eq. (3)). These are shown in Figure 2
and are also listed in Table 3. Forty isotopomer fractions
are balanced in the example. Four input variables are
needed to describe the labeling of Aex (here set to xinp =
(0.01,0.01,0.01,0.97)T). Exemplary, the balance equa-
tions for the isotopomer fractions a = (a00, a01, a10, a11)T of
pool A are shown.

v feed
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Example network structure including atom transitionsFigure 2
Example network structure including atom transitions. The reaction kinetics are given in Table 1.

B

A

Aexfeed

E

D

Eex C

vupt

v6

v7

v2

v3

v5

Reversible
M ichaelis M enten

M ichaelis M enten,
Allosteric Inhibition

Hill-Kinetik,
2 Substrates

M ichaelis
M enten,
Product Inhib.

M ichaelis
M enten,Allosteric

M ichaelis
M enten

Reversible
M ichaelis
M enten

F

F

FFex

v4

v1

Eex

Fex

vupt

vfeed

v6

v1

v2

v3v4

v7

v5

1

1

1

1

1 1
3

2

2

2

3

2
4

B

1 2A

1

1

1

1

2

2

2

Aex

D

E

Fe
ed

F

F

F1

C

Page 6 of 18
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:152 http://www.biomedcentral.com/1471-2105/9/152
Again it must be noted that the fluxes are functions of
kinetic parameters (see Table 1). For example, the flux v1
(A → B) is a reversible flux. Its rate is given by:

With known initial isotopomer fractions x0 at time point t
= 0 (usually determined by the natural isotope enrich-
ments), the integration of Eq. (3) yields the time course
x(t) of the isotopomer enrichments. In Figure 4 it can be
seen that pools A and B are rapidly enriched with labeled
carbon. Only at 2 s respectively at 5 s after the pulse they
do show the labeling of the input substrate Aex. Pools C,
D and E exhibit a different behavior. Especially in C and
D an interim labeling state can be observed, that results
from the reaction of unlabeled E#00 with fully labeled
B#11. This state is still seen in D while in E it is not as pro-
nounced because E is fed from B and D. This already hints
at additional information contents, because a more
detailed behavior in comparison to the one shown Figure
3 is observed. In the following sections, it will be seen that

the kinetic parameters do influence the isotopomer distri-
bution differently to the concentration time course.

Scenarios
Since there is still much development in the analytical
methods, scenarios with different measurements are
investigated. In order to estimate the influence of
increased or decreased availability of measurement infor-
mation the following cases will be compared (summa-
rized in Figure 5):

• Scenario Sall: This is an optimistic scenario where all
metabolite concentrations can be quantified and all mass
isotopomer fractions are available. Here, the mass iso-
topomers of the entire carbon skeleton are measured
without any fragmentation.

• Scenario SD-rel: Here, less information is available com-
pared to Sall; this scenario is derived from findings that for
some metabolites the concentration could not be deter-
mined [11]. Nevertheless, it was possible to measure the
mass isotopomer ratios. As an example, the concentration
of D cannot be determined, but its mass isotopomer ratios
are measured.
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Table 1: Kinetic rate laws used in the small example network.
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• Scenario SC,D-frag: Compared to scenario Sall additional
mass measurements of fragments are available. As an
example, the labeling distribution of the pools C and D
are measured in more detail because of a specific fragmen-
tation in MS/MS measurement mode (see Figure 5).
Metabolite D fragments into a C2 and a C1 skeleton. Here,
the mass isotopomers of the C2 body can be measured
additionally. Instead of four mass isotopomers, in total six
tandem mass isotopomer measurements are generated
[37]. Metabolite C fragments into a C3 and a C1 body.
Consequently, instead of five mass isotopomer ratios,
eight tandem mass isotopomers are measured.

To summarize, scenario Sall is optimistic, SC,D-frag is even
more optimistic, whereas in SD-rel some information is
missing.

Sampling and quality of the measurements
Besides the measurements, the sampling frequency is also
crucial for parameter identification [29]. For all scenarios,
the following sampling setup is used:

• Three samples are taken every 1 s before the pulse (-3...0
s),

• In the following 5 s samples are taken every 0.5 s (0.5...5
s),

• After 7 s samples are taken every 2 s (7...19 s)

The quality of the measurements depends on the accuracy
of the measurement device and possible errors during
sample preparation. Figure 6 depicts the sampling steps
usually needed to determine intracellular concentrations.
Essentially, the sampling steps lead to a dilution φ. The
signal intensity depends on the concentration in the sam-
ple and the response factor γ that is determined from

Simulation of the example network and the assumed measurement standard deviationsFigure 3
Simulation of the example network and the assumed measurement standard deviations. The extracellular con-
centration (Aex) rises from 0.05 mM to 1.5 mM by the pulse. The intracellular concentrations A and B show a short overshoot, 
C, D and E increase continuous and reach the steady state after about 25 s. The squares show the noise free measurements 
generated from the simulation. The standard deviations include the errors from sample processing and the MS measurements.
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standard additions [38]. More details about the measure-
ment model can be found in the appendix section. All
sampling steps and possible errors have to be taken into
account for the statistical analysis. Based on the current
knowledge for the standard deviations the following fac-
tors are considered:

• The response factors γ (set to 1 if determined) have a
standard deviation σγ of 1%.

• The dilution factors φ (ξ) (also set to 1) have a standard
deviation of 3%.

• The MS(/MS) measurement (area) itself is composed of
a relative error which is assumed in the order of 1% and
an absolute error that was set to 10 nM. The latter one
appears rather high, but as the dilution usually will be
around a factor 20 it is within a realistic range:

σMS(tk) = 10 nM + 0.01 γ yMS

Results
Statistical analysis
The example system consists of 40 isotopomer and six
concentration states with 24 parameters. Hence, the
parameter sensitivity matrix (Eq. (6)) contains 46·24 =
1104 entries for each of the 19 sampling time points.
Although interesting, a detailed analysis of these large
matrices is extraordinarily time-consuming. In fact, the
influence on the measurable signals is more relevant. As it
can be seen from equations, and the measurement equa-
tions are linear. Thus, the calculation of the output sensi-
tivity is straight forward (Eq. (7)).

Figure 7 shows the course of the sensitivities with respect
to kinetic parameters of the uptake reaction vupt (KI) and
reaction v1 (KmA, vmax and Keq). The sensitivities have to be
compared on a comparable scale. Recall that the mass iso-
topomers are given as fractions of the pool. Multiplying
the fractions with the pool concentration, the mass iso-
topomer concentrations are immediately obtained by c·x.

These quantities can be directly compared to metabolite
concentrations. Their parameter sensitivities can be sim-
ply obtained from Eq. (7) by using the chain rule. The sen-
sitivity matrix dy/dα includes the sensitivities of the
concentrations and of the mass isotopomers with respect
to kinetic parameters. These sensitivities are plotted in Fig-
ure 7. It is observed that:

• After the pulse there is a strong increase in sensitivity of
mass isotopomer concentrations of fully labeled pools
(A+2, B+2, E+2, with a less extend C+4, D+3)

• The sensitivity of unlabeled concentrations (A+0, B+0,
C+0, D+0, E+0) reaches zero, with some intermediate
peaks.

• Some parameters show maxima in sensitivity, e.g.
d(B·b+0)/dKmA, d(C·c+2)/dKmA, d(E·e+2)/dKmA.

Table 2: Kinetic parameters for the simulation study.

Reaction Parameter Value

feed c 0.01
upt νmax 1

KI 2
KmA 0.001

v1 νmax 3
Keq 3
KmA 0.1
KmP 3

v2 νmax 2.5
KmA 0.25
hA 2
KmB 2
hB 3

v3 νmax 2
KmA 2
KI 0.05

v4 νmax 3
KmA 0.1
KI 1

v5 νmax 2
Keq 4
KmA 1
KmP 1

v6 νmax 2
KmA 3

Table 3: Atom transitions for the small example network

Flux Substrates Products

vfeed Feed > Aex
#ab #ab

vupt Aex > A
#ab #ab

v1 A > B
#ab #ab

v2 B + E > C
#ab #cd #abcd

v3 C > D + F
#abcd #bcd #a

v4 D > E + F
#ab #ab #c

v5 B > E
#abc #ab

v6,ex E > Eex
#ab #ab

v7,ex F > Fex
#a #a

The notation of Wiechert and de Graaf [24] is used.
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• Some parameters first show positive, then negative
influence on the mass isotopomers (and vice versa), e.g.
d(B·b+0)/dKmA, d(B·b+0)/dKeq, d(B·b+0)/dvmax.

• Most parameter sensitivities reach a new steady state
within the given simulation interval of 20 s, e.g. d(A·a+2)/
dKmA, d(A·a+2)/dKeq, d(A·a+2)/dvmax.

These findings clearly show that the kinetic parameters do
not only influence the total metabolite concentrations,
but also influence the labeling dynamics. Within the sta-
tistical analysis section it will be seen that this will help to
achieve an identification of the enzyme parameters.

Parameter standard deviations
Figure 8 shows a cumulative plot of the estimated relative
standard deviations of all parameters. Obviously, the
majority of the parameters can hardly be determined from
the (unlabeled) reference experiment. The best estimate is
found to have about 46% relative error. The second step is
seen at about 61%, which is the second best estimate.
Three parameters are found within a standard deviation of
about 137%. These high deviations are observed because
the scenario includes 3% sample dilution error and addi-
tional noise from the MS device. Especially for low con-
centrated metabolites (like E, see Figure 3), high standard
deviations occur due to the ground noise (10 nM) of the
MS measurements. It has to be taken into account too,

Simulation of the isotopomer enrichmentsFigure 4
Simulation of the isotopomer enrichments. The extracellular substrate Aex immediately switches from unlabeled to 
labeled. The enrichment of A and B is fast (steady state after <10 s), pool C shows intermediate labeling patterns before reach-
ing the fully labeled steady state. These intermediate patterns can also be seen in D and E.
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Summary of the compared measurement scenariosFigure 5
Summary of the compared measurement scenarios. In Sall it is assumed, that all concentrations and mass isotopomers 
can be measured. Scenario SD-rel is less informative, the concentration of metabolite D cannot be quantified. SC,D-frag assumes 
MS/MS measurements with fragmentation for the metabolites C and D.
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Scheme of the sample processing stepsFigure 6
Scheme of the sample processing steps. The single sampling steps and their effects on concentration and labeling meas-
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that there are more than the 24 kinetic parameters.
Another 19 × 5 + 5 = 100 parameters (five φ 's for each
measured metabolite and each sampling time point a

nd five γ 's) are introduced for the measurement model.
Although these parameters are measured directly from the
sampling volume, added reagents and standard additions,
these additional parameters do consume some informa-
tion. It is seen from the statistical analysis that these
parameters are also influenced and their estimation accu-
racy gets higher compared to the experimental errors.

A pronounced increase in estimation accuracy of the
kinetic parameters is seen when comparing scenario Sall
with the unlabeled reference (Figure 8). The line is shifted
about a factor of 10 to the left. The increase is even more
pronounced for the most accurate estimation (0.92% that
is about a factor of 50). With up to 70% standard devia-
tion, 10 parameters are found for the labeled experiment
compared to only two for the reference.

When comparing the three labeled scenarios only little
differences can be found. With some additional labeling
information (scenario SC,D-frag) the estimates become
slightly more accurate (red, dash-dotted line). A missing
concentration (scenario SD-rel) can obviously be compen-
sated by the labeling information. The dashed line is

Scheme of the sample processing stepsParameter sensitivity plotsFigure 7
Parameter sensitivity plots. First row: Sensitivities of the concentrations to the parameters of reaction v1 (KmA, vmax and 
Keq) and vupt (KI). Second to last row: Sensitivities of selected mass isotopomer concentrations to the same parameters.
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Cumulative distribution of the estimated standard deviationsFigure 8
Cumulative distribution of the estimated standard deviations. In the unlabeled reference experiment the most accu-
rate parameter is determined with a relative standard deviation of about 46% (first step of the black line). Only two parameters 
can be determined with less than 70% standard deviation. In contrast, using a labeled substrate, 10 parameters (about 40% of 
the parameters) can be determined with a standard deviation of less than 70%.
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shifted to the right slightly. The most accurate estimate has
a standard deviation of 0.93%.

These findings are also reflected in the D- and A-criterion
(Table 4). The A-criterion is based on the variances and
reflects an information increase that is comparable to
observations from Figure 8. The increase in information is
11.01 (scenario Sall). The information gain from scenario
SC,D-frag is about 1% higher; for SD-rel about 1% lower.

The information gain calculated from the D-criterion is
lower. Here a value of 6.91 is calculated for scenario Sall.
With some more available labeling measurements (sce-
nario SC,D-frag) a factor of 7.31 is found. The information
gain for scenario SD-rel decreases only marginally com-
pared to Sall (6.80).

Parameter correlations
So far, the improvement of the absolute variances of all
parameters was investigated. In order to characterize the
influence of the additional information from 13C labeling
on the relationship among different parameters, the corre-
lation matrix (Figure 9) will now be analyzed. The corre-
lations for the reference experiment and the labeled
scenario Sall are shown. The parameters are grouped with
respect to the reactions and a block structure becomes vis-
ible.

At first glance a strong decrease in correlation can be
observed on the areas outside of the main diagonal
blocks. There are blocks with only little changes close to
the main diagonal. These blocks are formed from groups
of parameters that belong to one single reaction step. For
example, the kinetic parameters vmax and KmA of the reac-
tion v1 are strongly positive correlated (bue). I.e. if one is
estimated too high, the other will also be estimated too
high. Also in the labeled scenario, these parameters can-
not be determined separately. It is well known from

enzyme kinetic studies that vmax and KmA values can hardly
be independently determined, if the experimental concen-
tration range is not chosen correctly.

In the following it will be seen that the effect of improved
parameter distinction between different reaction steps is
based on indirect flux measurements. The parameters KmA
(of reaction v1) and KI (of vupt) were chosen here as an
example, because a strong decrease in correlation is
observed. In Figure 7 the sensitivities of these parameters
are plotted for the reference and the scenario Sall. Clearly,
parameters with distinct influence on measurements will
be less correlated. Within the reference the parameters
exhibit a rather comparable influence on all measure-
ments (though the magnitude is distinct). As a conse-
quence, positive correlation is observed.

If labeling is introduced, the picture gets different. The
influences on the measured mass isotopomers show some
behavior that leads to a decoupling of parameters espe-
cially within the first 5 s after the pulse. The intermediate
labeling patterns, particularly E+2, B+2 as well as E+0 and
B+0 exhibit a distinct behavior for parameters KmA and KI.
Whereas KmA exhibits a strong influence on the time
course of these mass isotopomers, the influence of KI is
relatively small. Additionally, the sensitivities of KmA show
a strong time dependency that increases the independent
measurement of this parameter.

Conclusion
The exploratory study strongly suggests that performing a
stimulus response experiment with 13C labeled substrate
and measuring the intracellular labeling states can signifi-
cantly increase the accuracy of kinetic parameter estima-
tion. A decrease in the variance of more than a factor of 10
was observed for the analyzed example network (Figure
8). With labeling, three parameters are determined with
less than 10% relative standard deviation. More than 40% 

of the parameters (i.e. 10 of 24) can be determined with
less than 70% standard deviation (Figure 8).

Additionally it was found that various parameter correla-
tions are drastically reduced (Figure 9). When comparing
the experiment with labeled substrate to its reference
counterpart a seven fold information gain (based on the
D-criterion) was observed. Interestingly, the information
loss due to the unknown concentration of pool D (sce-
nario Sall) can be compensated by the measured mass iso-
topomer distributions. This scenario shows only slightly
less accurate determined parameters (Figure 8 and Table
4)

It can clearly be seen from the sensitivities that the param-
eters influence the labeling time course more specifically

Table 4: Comparison of the D- and A-crtiteria.

Scenario

Substrate Criterion Sall SD-rel SC,D-frag

12C, ξ D 2.20 108

ID 1
U-13C2, ξ D 5.05 10-26 2.57 10-25 3.58 10-27

ID 5.02 4.85 5.31
12C, ξ A 1.06 106

IA 1
U-13C2, ξ A 1.02 103 1.07 103 0.91 103

IA 10.17 9.95 10.77

List of D- and A-criteria for the different measurement scenarios of 
an experiment without the addition of labeling (12C) and an 
experiment with fully labeled substrate (U-13C2). The calculation of D, 
A and the information index is given in Eq. (11) and (12).
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than the concentration time course. When only measur-
ing the concentrations, a concentration increase can be
explained by an increased influx or a decreased efflux. The
addition of isotopic transients to the concentration
courses serves as additional information about the pool
exchange. A higher influx will lead to a faster labeling
enrichment, while a decreased efflux will slow down the
labeling enrichment. Thus, the labeling transients include
information about the pool exchange that delivers valua-
ble constraints for parameter identification.

In the case of isotopically nonstationary experiments
under metabolic steady-state conditions, a similar exam-
ple network was analyzed to estimate the information
gain compared to a classical 13C labeling experiment at
isotopically steady-state [39]. The conclusions from the
simulation study have shown to be in accordance with
findings from a complex E. coli network [11]. Therefore,
the results obtained from the performed exploratory study
should be transferable to real sized metabolic networks.

Clearly, an automated simulation tool is required to set
up the equations based on the stoichiometry and the
atom transitions. To solve these equations algorithms
comparable to the tool of Nöh et al. [29] could be applied.
Nöh et al. [29] have shown that the solution of approxi-

mately 4000 equations can be handled without problems.
Compared to this number, the additional kinetic equa-
tions (1) can be neglected. Also, the sensitivities can be
rapidly calculated using a cluster computer [29]. As fur-
ther refinement, Antoniewicz et al. [28] demonstrated
that the dimension of isotopomer balances can be further
reduced using the concept of Elementary Metabolite Units
(EMU).
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Appendix: Details on the measurement model
Within scenario Sall all pool concentrations can be meas-
ured and the labeling state is observed by mass isotopom-
ers from unfragmented molecules over time (Section
"Scenarios"). For a metabolite with n carbon atoms, a
total of n+1 different mass isotopomers will be measured.
For example, the unlabeled pool A#00 will be found at a
mass M(A)+0 (henceforth denoted as A+0). The signal

Cumulative distribution of the estimated standard deviationsColor visualization of the correlation matrixFigure 9
Color visualization of the correlation matrix. The parameter correlation matrix for the reference experiment (left) and 
the labeled experiment Sall (right). Deep blue represents a correlation of 1, deep red represents -1.
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A+1 is evoked by the singly labeled isotopomers A#01 and
A#10. The fully labeled A#11 is found in the signal A+2.
Usually some linear relationship between the signal inten-
sity yA and the concentration can be supposed. A scalable
measurement model with some scaling factor ω is intro-
duced by Möllney et al. [10]. Following this approach, the
mass isotopomer measurements for pool A can be
expressed by:

y+0(tk) = ω(tk)·a00(tk)

y+1(tk) = ω(tk)·(a01(tk) + a10(tk))

y+2(tk) = ω(tk)·a11(tk)

which can be shortly denoted by

y(tk) = ω(tk)·M x(tk)

The measurement equations with tandem mass iso-
topomers [37] are a little bit more evolved. The construc-
tion of the associated measurement matrix can be found
in [37]. Its implementation is then done analogously to
the example shown.

In contrast to an experiment without labeling, a metabo-
lite pool is now distributed over various mass isotopom-
ers depending on the labeling state. The total
concentration has to be reconstructed from the single
mass isotopomer measurements. Assuming that the labe-
ling has no influence on the ionization, the calibration for
the unlabeled metabolite can be used for all mass traces.
Usually some linear relationship between the signal inten-
sity y and the sample concentration is supposed, given by
the response factor γ. The sample concentration originates
from various pre-processing steps (Figure 6). Thus, the
measured signal is obtained from the intracellular concen-
tration c(tk), the dilution factor φ(tk) (sample preparation)
and the response factor γ:

Some specialities of the different factors have to be
pointed out:

1. The response factor γ is a device dependent factor that
will usually be constant for all measurement time points,
but different for each metabolite:

γ = (γA,...,γE)T

2. The dilution factor φ(tk) reflects the sampling procedure
and, thus, is time dependent (e.g. due to different
amounts for neutralization). With regard to the metabo-

lites, different scenarios could be taken into account. Cur-
rent observations show, that during quenching
metabolites leak to different extents [40]. Therefore in this
study, a dilution factor for each metabolite is introduced
that is independent. The vector of dilution factors thus
reads:

φ(ξ) = (φA(t1),...,φE(t1),...,φA(tN),...,φE(tN))T

Here a difference between the labeled and the non-labeled
experiment has to be noticed. The dilution factor φ(tk) is a
pool factor, the isotopomers of this pool are diluted to the
same extent.

3. The scaling factor ω(tk) is used for scaling the simulated
labeling enrichments to the absolute scale of the measure-
ment device. Consequently it can be replaced by the pre-
viously discussed scaling factors:

ω(ξ) = (γA φA(t1)/A, γB φB(t1)/B,..., γE φE(tN)/E)T

The errors of the single factors used for the simulation
study have been mentioned in the main text. How these
errors can be included to the regression model has not
been discussed. The response factor γ is determined from
a standard addition and is assumed to be constant over
the measurement sequence. This factor is determined for
each metabolite.

In contrast, φ(tk) is needed for each measurement time
point. Thus, the regression Eq. (8) has to be extended by
the scaling factors γ and φ(tk):

Construction of the measurement covariance matrix
The covariance matrix Σ contains the measurement vari-
ances that can be obtained from multiple measurements
or more common from measurement validation. Its con-
struction depends on the regression model (Eq. (21)). In
case that g(x(ξ), c(ξ)) calculates the measurement vector
(A+0, A+1, A+2, B+0, B+1, B+2, C+0, C+1, ... E+2) at t1 and in the
following of t2 until tN. For sample preparation we have to
take into account the dilution (Φ) of each metabolite at
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each time point. The accuracy of the concentration-
response is determined for each metabolite. Thus, the
matrix will have following structure:
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