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ABSTRACT: In the past decade, machine-learned potentials (MLP) have
demonstrated the capability to predict various QM properties learned from a set
of reference QM calculations. Accordingly, hybrid QM/MM simulations can be
accelerated by replacement of expensive QM calculations with efficient MLP
energy predictions. At the same time, alchemical free-energy perturbations
(FEP) remain unachievable at the QM level of theory. In this work, we extend
the capabilities of the Buffer Region Neural Network (BuRNN) QM/MM
scheme toward FEP. BuRNN introduces a buffer region that experiences full
electronic polarization by the QM region to minimize artifacts at the QM/MM
interface. An MLP is used to predict the energies for the QM region and its
interactions with the buffer region. Furthermore, BuRNN allows us to
implement FEP directly into the MLP Hamiltonian. Here, we describe the
alchemical change from methanol to methane in water at the MLP/MM level as
a proof of concept.

Hybrid quantum mechanics/molecular mechanics (QM/
MM) simulations1 have emerged as a powerful tool in

the field of computational chemistry. They provide a way to
study bigger system sizes by combining the accuracy of QM for
a smaller region of interest with the efficiency of MM force
fields for the remaining, larger, part of the simulation box.
QM/MM simulations have two major limitations. The first

limitation is the significant computational cost of the QM
calculations. The second limitation is the treatment of the
interface between the QM and MM regions. This interface
requires a consistent description of both the electronic
structure of the QM region and the classical potential energy
functions of the MM region. The most common approaches to
describe the interface are2,3 (i) Mechanical embedding (the
interaction between two regions is treated by MM using point
charges for QM atoms); (ii) Electrostatic embedding (the
point charges from the MM region are included in the
Hamiltonian of the QM region); (iii) polarizable embedding
(self-consistent mutual polarization of QM and MM regions, a
polarizable force field is needed for the MM region).4

Regardless of the embedding scheme, QM/MM simulations
are prone to artifacts at the QM/MM interface such as
overpolarization of the QM region (in electrostatic embed-
ding), or discrepancies between the QM and MM forces.5,6

In the past decade, machine-learned potentials (MLP)
revealed to be a promising approach to accelerate QM/MM
simulations by substituting expensive QM calculations.7−13

MLPs learn the relationship between input descriptors (atomic
numbers and coordinates) and output quantities (energy and
forces) from a set of training configurations with target

energies calculated with the desired level of QM theory.12 A
well-trained MLP can predict energies with QM accuracy in a
significantly shorter time. Nowadays, a wide range of MLPs are
available, enabling numerous applications.14−18

Recently, MLPs have also been used in the context of
alchemical free energy perturbations (FEP) to incorporate the
QM level of theory into these techniques.7,19,20 First,
corrections to the conventional force field (MM) binding or
solvation free energies were described.7,20 In this case, a
MLP(QM)/MM scheme with mechanical embedding was
used to describe the ligand (solute) with a more accurate MLP.
The latter approach still describes the interactions of the ligand
with the surroundings at the MM level. Thus, these crucial
interactions are not yet described at the QM level. Second,
solvation free energies of small organic molecules were
calculated by a MLP which described the entire system.19

Therefore, FEP is performed at the MLP (QM) level of theory.
However, this approach depends on the specific type of MLP
architecture that enables distinguishing individual nonbonded
interaction terms. In addition, MLPs have also shown
significant potential when used in combination with enhanced
sampling methods.21−23
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Here, we report on new capabilities of the recently described
Buffer Region Neural Network (BuRNN) MLP(QM)/MM
scheme.24 In comparison to the conventional QM/MM
schemes, BuRNN divides the system into three regions. The
first is an inner region (I) which is equivalent to the QM part
of the conventional QM/MM (region of interest) and thus is
described by QM or the appropriate MLP. The second part is a
buffer region (Buf) which contains the close surroundings of
the inner region. The buffer region is treated at both the QM
and MM levels of theory, allowing for a QM description of the
inner region with its close environment and a MM description
of both the inner and buffer region with the rest of the
simulation box, called the outer region (O). The potential
energy of the system is calculated as follows:

V V V V Vtot I Buf
QM

Buf
QM

Buf
MM

O O Buf O I
MM

, ,= + ++ (1)

In the following, we refer to simulations performed using eq
1 as Buffer Region QM (BuRQM). However, to avoid the
need for two expensive QM calculations, we use a MLP to
directly predict the VI+Buf

QM − VBuf
QM difference:

V V V Vtot I I Buf
MLP

Buf
MM

O O Buf O I
MM

, , ,= + + (2)

See the original BuRNN paper24 for a more detailed
description of the method. In the current work, we
demonstrate that the BuRNN approach can handle more
atoms within the inner region, expanding upon the original
BuRNN paper where the inner region consisted of only a
single atom. Moreover, we show how BuRNN can be used to

Figure 1. BuRNN simulations of methanol and methane in water. (A, B) Radial distribution function between either methanol oxygen (A) or
methane carbon (B), and all the water oxygens. The results are compared with BuRQM (dark gray) and classical MM Gromos simulation (light
gray). The BuRNN simulation results are depicted in orange. Offsets from 1 (BuRNN) to 0 (MM Gromos) were introduced for better
visualization. (C) Hydrogen bonds between the methanol and the water molecules. (D, F) Vibrational spectra of C−H, C−O, and O−H bonds
within methanol (D) and C−H bonds within methane (F). The comparison between BuRNN and BuRQM is shown. (E) Tetrahedral arrangement
around the methanol oxygen when methanol accepts a hydrogen bond from a water molecule. The angle between the C−O−H plane in methanol
and the C−O···HW plane was measured.
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perform alchemical free energy calculations with QM
precision. We present FEP within the MLP(QM)/MM
scheme, where the solute−solvent interactions are perturbed
with QM precision. As a proof of concept, we show the use of
FEP of methanol to methane in water. We emphasize that our
method is not tied to any specific MLP architecture. Therefore,
the choice of MLP is completely up to the user.
First, we trained the MLP to predict the VI+Buf

QM − VBuf
QM

differences for our test systems (methanol and methane in
water). In the context of the BuRNN scheme, methanol (or
methane) was considered as the inner region. The buffer
region contained water molecules up to 0.5 nm from the inner
region. The buffer region in the BuRNN scheme is adaptive
and thus the water molecules were able to freely move in and
out of the buffer region which was updated every time step.
The outer region covered the rest of the simulation box and
contained 1169 (1045 for methane) water molecules. The
training data set was generated by using classical MD
snapshots as initial data points. We used the semiempirical
PM7 method25 in MOPAC to perform QM calculations.26

First, a geometry optimization of the MD snapshots was
performed to generate additional data points by including all
the minimization steps in the training data set. The size of the
data set was subsequently reduced by (i) removing obvious
outliers with energies more than 105 kcal/mol above the
average value of VI+Buf

QM − VBuf
QM. (165 kcal/mol for methane);

(ii) by using an iterative training procedure reported earlier.27

The final training data set size consisted of 3313 data points for
both systems together. Another 2625 data points were added
based on adaptive sampling of the BuRNN simulations and
later the BuRNN FEP simulations.27,28 The SchNet con-
tinuous-filter convolutional NN architecture was used to train
the MLP models.15,29 We used the Query-by-Committee
approach (agreement between the ensemble of MLPs) to

monitor the accuracy of our MLP.30 We trained two MLPs
(predictive and validative) with identical hyperparameters. The
only difference was a random split of the training data. A more
comprehensive description of the MLP training procedure can
be found in the Supporting Information (SI) (sec. S1.1 and
S1.2). All simulations were performed in a modified version of
the GROMOS software.31,32 We ran 2 ns BuRNN simulations
(5 replicas) for each system without constraining the bond
lengths within the inner region. The results were compared
with BuRQM simulations using the same MOPAC settings for
the QM region, as in the generation of the training data (1
replica) and conventional MM simulations (5 replicas). The SI
provides more details about the BuRNN simulation setup (sec.
S1.3.1).
The resulting BuRNN simulations were able to reproduce

the BuRQM simulations very well. To validate them, we first
looked at the radial distribution functions (RDF) between
either methanol oxygen (Figure 1A) or methane carbon
(Figure 1B) and water oxygens. In both cases, the RDF curve
of BuRNN was almost identical to the BuRQM one. Moreover,
we did not observe any artifacts at the buffer/outer region
interface (0.5 nm). Next, we investigated the hydrogen
bonding between methanol and water, which takes place
over the inner region−buffer region interface (Figure 1C). A
strong agreement between BuRNN and BuRQM was observed.
Both BuRQM and BuRNN simulations show a higher
occurrence of 3 hydrogen bonds in comparison with classical
MM. In contrast to the force field, the MLP used in BuRNN
simulations was able to learn the tetrahedral arrangement
around the methanol oxygen, due to the interaction of water
molecules with the lone pairs of the oxygen. We observed this
by measuring the angle between the C−O−H plane in
methanol and the C−O···HW plane involving the C and O
atoms of methanol and the hydrogen atom of the H-bond

Figure 2. Behavior of the perturbed BuRNN simulation (Methanol to methane in water). (A) Radial distribution function between methanol
oxygen and all the water oxygen atoms for selected λ-values. To increase visibility, we introduced a decreasing offset from 5 (λ = 0) to 0 (λ = 1) to
individual RDF curves. (B) Average number of hydrogen bonds (top) and average NN energy (bottom) per λ-point.
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donating water molecule. Figure 1E shows two well-resolved
peaks at approximately −40 and 40 degrees for the BuRNN
simulations, which suggest a tetrahedral order. The latter trend
is significantly less pronounced in MM simulations. BuRNN
simulations with constrained bond lengths within the inner
region show very similar results (Figure S3). Lastly, we
calculated the power spectra of C−O, O−H, and C−H bond
vibrations within methanol (Figure 1D) and C−H bonds in
methane (Figure 1F). The BuRNN simulations agree with
BuRQM in this case as well.
Now that we have established that BuRNN accurately

describes the end states, we focus on the use of FEP within this
scheme. We decided to use a dual topology approach. Hence,
the inner region contained both molecules (methanol and
methane) and the interaction energy terms of one molecule are
turned off, while the interaction energy terms of the other are
turned on, as a function of a coupling parameter, λ:

V V V( ) (1 )I I Buf
MLP

A I I Buf
MLP

B I I Buf
MLP

, ( , ) ( , )= + (3)

The full potential energy term in the BuRNN scheme can then
be described as eq 4, including the perturbation of the
interaction between the inner and outer regions:

V V V V V

V

( ) ( ) (1 )I I Buf
MLP

Buf
MM

O O Buf
MM

O I
MM

O I
MM

, , A

B

= + + +

+ (4)

However, in this implementation, the interaction energies of
one of the molecules is scaled to zero when λ = 0 or λ = 1, also
turning off the intramolecular interactions and thereby losing
the chemical structure of the compound. Consequently, the
absence of forces to maintain the correct conformation of the
missing molecule will lead to incorrect geometries and
artificially high energies. To address these issues, inner region
configurations were extracted from the training data set to

retrain the MLP for a separate prediction of the potential
energy for the inner region alone. This enables us to construct
a Hamiltonian that preserves the intramolecular interactions of
both molecules within the inner region (eq 5). Accordingly,
only the nonbonded interactions with the buffer region are
perturbed:

V V V V

V

( ) (1 )

(1 )

I I Buf
MLP

A I I Buf
MLP

A I
MLP

B I I Buf
MLP

B I
MLP

, ( , ) ( ) ( , )

( )

= + +

+ (5)

To test our solution, we performed perturbed BuRNN
simulations. Twenty-two λ points were simulated for 1 ns each
(in 3 replicas). The state at λ = 0.0 corresponded to the
solvated methanol while the state at λ = 1.0 represented
solvated methane. Distance restraints were applied to keep the
molecules in the inner region aligned and the bond lengths
within the inner region were constrained by the SHAKE
algorithm.33 See SI section S1.3.2 for a complete description of
the FEP simulations setup. The simulations were stable and
consistent with our expectations, as illustrated in Figure 2. The
RDF analysis shows the gradual reduction of the methanol
solvation shells (Figure 2A). The average number of hydrogen
bonds formed between water and methanol decreases from 2.6
at λ = 0.0 to ∼0.5 at λ = 1.0 (Figure 2B top). In contrast, the
average energy per λ point exhibits an increase, rising from
−74.4 to 2.6 kJ/mol (Figure 2B bottom). This behavior is
anticipated due to the significantly stronger interaction
between methanol and water (compared to methane and
water).
The free energy difference (ΔG) was estimated from the

perturbed BuRNN energy trajectory using thermodynamic
integration (TI):34

Figure 3. Estimation of ΔG from perturbed BuRNN simulations. (A) Thermodynamic cycle for the performed perturbations. The perturbations on
the BuRNN level are shown in orange, whereas the perturbations between the BuRNN and MM level are depicted in light blue. Gray color denotes
MM perturbations. Brackets represent the results where soft-core interactions were not used in MM perturbations. The numbers in the center of
the thermodynamic cycle refer to the cycle closure values (B) ⟨∂H/∂λ⟩ values for the individual lambda points (top and bottom left panels). The
individual numbers represent the average over 3 replicas for all 3 panels. Color coding is the same as in panel A. The comparison of the ΔG
estimates between PM7 and different DFT functionals and basis sets (bottom right panel). The black dashed line represents the experimental
ΔG.35,36
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G V
d

0

1
=

=

=

(6)

Therefore, V was defined as a derivative of VI,I↔Buf
MLP (λ)

Hamiltonian from eq 5 with respect to λ:

V
V V V

V

( )I I Buf
MLP

A I I Buf
MLP

A I
MLP

B I I Buf
MLP

B I
MLP

,
( , ) ( ) ( , )

( )

= + +

(7)

Such that

V V V V V

V V

A I I Buf
MLP

A I
MLP

B I I Buf
MLP

B I
MLP

O I
MM

O I
MM

( , ) ( ) ( , ) ( )

A B

= + +

+ (8)

TI results demonstrated the capability of BuRNN to give
stable and consistent ΔG estimates (Figure 3). To check for
consistency, the thermodynamic cycle depicted in Figure 3A
was designed. Conversion of methanol to methane was
performed at either the BuRNN or the MM level of theory
(Figure 3A orange and gray arrows). Furthermore, we ran
perturbations between BuRNN and MM levels of theory for
both systems to close the thermodynamic cycle (Figure 3A
blue arrows). Note that in the BuRNN methodology, a
constant reference value is subtracted from all data points
during the MLP training (see SI section S1.1). Accordingly,
the BuRNN energy level is comparable to a force field energy
and the values along the vertical arrows do not represent the
formation free energy of the QM molecules. Our methodology
showed consistent free-energy differences, with a thermody-
namic cycle closure of −1.8 kJ/mol (Figure 3A). All the
perturbations were run in 3 replicas. Figure 3B denotes ⟨∂H/
∂λ⟩ values for the individual λ-points (averages over 3 replicas)
for all the legs of the thermodynamic cycle. We also performed
the perturbation at the BuRNN level (in 3 replicas) without
using the SHAKE algorithm to check the consistency of the
ΔG estimates without using constrained bond lengths within
the inner region (Figure S4 and S5). The estimated value of
ΔG (35.3 ± 0.5 kJ/mol) was very comparable to the one with
the SHAKE algorithm turned on in the inner region (35.7 ±
0.4 kJ/mol).
As the λ-dependent Hamiltonian of eqs 4 and 5 only

involves the interactions of the inner region with the buffer
region and with the outer region, the resulting free energy is
directly representative of the relative solvation free energy of
the molecules. The value of 35.7 kJ/mol is in reasonable
agreement with the experimental estimate of 29,6 kJ/mol,35,36

considering the fact that the PM7 method was parametrized
against experimental and CCSD(T)/CBS energies, rather than
free energies.25 In the current setup, we have used distance
restraints between the two molecules to avoid them from
separating during the simulation. This also conveniently
circumvented the need for soft-core interactions when more
atoms are turned into noninteracting particles. MM
perturbations were performed with and without soft-core
potential (Figure 3) to investigate the influence of soft-core
interactions on this system. As appropriate for a path-
independent state function, the impact was negligible (0.2
kJ/mol difference). Nonetheless, using the λ-dependent
enveloping distribution sampling that was recently introduced,

a soft-core mimic can be implemented directly onto the
perturbed BuRNN energies.37

Finally, we evaluated the performance of perturbed BuRNN
at the density functional theory (DFT) level. The previously
used training data set (no additional adaptive sampling was
performed) was recalculated using the Gaussian 16 software
package38 with hybrid ωB97X-D functional39 in 6-311+G(d)
basis set.40,41 The resulting MLP was able to run the stable
BuRNN perturbation simulation as well. However, the ΔG
estimate of 58.4 ± 0.6 kJ/mol was far from the experimental
value (Figure 3B bottom right). Next, the aug-cc-pVDZ basis
set42,43 with the same DFT functional was used to train
another MLP which resulted in a ΔG estimate of 42.7 ± 0.5
kJ/mol. We approached the experimental value most closely
with a third MLP, representing the B3LYP44−46 functional with
the aug-cc-pVDZ basis set (ΔG = 31.9 ± 0.4 kJ/mol). These
results suggest a significant dependency of the ΔG estimates
on the selected DFT functional and the basis set, which is also
reflected by a significant variation in the solute−solvent
interaction energies (see SI section 3.2 for further details).
In summary, we have shown that the BuRNN methodology

can be expanded to molecular systems in the inner region.
While the complexity of the systems is still low, we have
trained a single neural network that accurately predicts the
potential energy at the QM level of two distinct molecules,
both in their solvated and in their unsolvated states. Future
work will expand the complexity of both the inner and the
buffer regions. Furthermore, we have demonstrated that robust
free-energy calculations can be performed in the BuRNN
setting, directly opening the way to study solvation free
energies at the QM level, and with potential applications for
binding free-energy calculations in the longer run.
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