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Experimentally Guided Iterative Parameter Estimation for Predictive

Chemical Oscillator Models

Maélle Le Cacheux, Luca E. Oddone, Sofiya A. Runikhina, Johanan Kootstra,
Andreas Milias-Argeitis,* and Syuzanna R. Harutyunyan*

Abstract: Chemical oscillators are fundamental to dynamic processes in biology, from circadian rhythms to metabolic
regulation, inspiring efforts to design synthetic analogues for use in responsive materials, autonomous systems, and
molecular computing. However, creating robust and tunable synthetic oscillators remains a major challenge due to
the inherent complexity and difficulty of identifying conditions that support sustained oscillations. We herein describe
an iterative approach based on mathematical modeling and parameter estimation guided by live experimental data
to accurately model the oscillating chemical network. Fitting a kinetic model to the whole chemical network proves
considerably more effective and time-efficient than determining reaction rates individually and enables quick screening
of various parameters. We apply this method to achieve sustained oscillations in flow when changing various aspects of our
recently developed oscillating system, demonstrating its potential to facilitate the development and optimization of organic
oscillators as well as offering a general framework for analyzing and optimizing complex synthetic CRNs.
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Introduction

Nature is rich with nonlinear and dynamic processes that give
rise to a wide range of complex behaviors. One of the most
striking examples of such dynamics is oscillations, in which
a system undergoes periodic changes in (thermodynamic)
state over time. These oscillations are vital for life and play
key roles in pattern formation, signal transduction, chemical
responsiveness, and many others.'81 Chemical oscillators,
in which the concentration of one or more species varies
periodically over time, are also typical examples of nonlinear
dynamic behavior. Although the first synthetic chemical clock
was already described in 1886 by Landolt, the first synthetic
oscillator, the Belousov-Zhabotinsky (BZ) reaction, was
discovered by serendipity in 1950 and still remains the best-
known example of sustained chemical oscillations in a batch
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(closed) system.[>!°] The BZ and related reactions have
been instrumental in advancing our understanding of non-
linear dynamics, emergent behavior, and pattern formation
and have provided valuable insights into analogous mech-
anisms in living organisms.['"1?] Extensive efforts enabled
the identification of the basic design principles required to
construct oscillators. The first synthetic chemical oscillators
were developed using a generic design strategy based on
the cross-shaped phase diagram introduced by Boissonade
and De Kepper in 1980.[>™] This approach enabled the
identification of oscillatory regimes without requiring detailed
mechanistic models. In the 1990s, a more system-specific
design method emerged, allowing for the construction of a
wide range of pH oscillators based on simplified reaction
schemes and mechanistic modeling.'>1 At the heart of
these systems lie chemical reaction networks (CRNs) that
feature: autocatalysis, where a product accelerates its own
formation, feedback inhibition, to suppress autocatalysis and
“reset” the system, a triggering mechanism to allow state
transitions, and a delay to introduce temporal separations
between oscillatory cycles. These components collectively
define a relaxation oscillator mechanism.['®] To keep the
system out of equilibrium, a constant energy inflow in the
form of fresh reagent and outflow of the reaction mixture
is implemented, often in a continuously stirred tank reactor
(CSTR).

While these principles enabled the development of many
inorganic oscillators,!'”] very few oscillators based on organic
molecules are known.'®23] In contrast to their inorganic
counterparts that often operate under harsh conditions,
organic oscillators offer greater structural diversity, higher
tunability, and compatibility with milder, more practical con-
ditions. Achieving reliable and predictive control over organic
oscillators is essential for advancing their utility, but, despite
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well-established design frameworks, realizing sustained oscil-
lations remains a major challenge. Oscillatory behavior only
emerges within narrow regions of parameter space, making
it difficult to determine the precise experimental conditions
under which it occurs.[?*]

Our group recently developed a modular catalytic organic
oscillator, engineered for high tunability. To explore its behav-
ior under varied conditions, we constructed a mathematical
model that describes the chemical reactions in the CRN
using rate constants measured from isolated reactions.?'! This
modeling approach, where the variables correspond directly
to the starting materials in the system, differs from the
phenomenological model approach introduced by Boissonade
and De Kepper and requires the resulting model to have
sufficient mechanistic and dynamical complexity to reproduce
oscillating phenomena. Although this model reproduced the
overall behavior of the CRN, it was not able to accurately
predict oscillatory conditions when modifying the system
or conditions. This is because CRNs are inherently com-
plex, with each component directly or indirectly influencing
others.[?20] As a result, the reaction rates can be affected
by not accounted side reactions, shifts in equilibria, and
network-induced feedback, all of which differ substantially
from behavior observed in isolation. Altering even a single
component can ripple across the entire system, further
widening the gap between measured and effective kinetics.
Since models based on reaction rates determined in isolation
do not take this into account, they describe the system in
a state that does not exist under real operating conditions
and consequently fail to accurately predict systemic behavior.
This inaccuracy results in prolonged optimization times when
making even minor adjustments, the need for numerous
tedious kinetic studies, or, in the worst cases, complete failure
to find the conditions for sustained oscillations. This problem
is common for various types of designed oscillators and
remains a significant hurdle, including in the model developed
by our group.[*)] The main challenge, therefore, is to find
the reaction rate constants that best describe the system in
its oscillating regime. Unfortunately, most kinetics determina-
tion techniques require the isolation of the process followed,
thus making them inherently flawed for our purposes.

Seeking a more effective approach for constructing a
predictive mathematical model of our chemical oscillator, we
turned to parameter estimation, a method to determine the
combination of system parameter values that reproduces a
set of experimental data. While this approach is widely used
in dynamic systems modeling,?7?° here we propose the use
of parameter estimation as a design and optimization tool
for chemical oscillators by embedding it within an iterative
framework that combines model fitting to experimental data
and in silico screening of initial conditions.

We first demonstrate how joint estimation of reaction
rates outperforms traditional kinetic modeling to describe
our oscillatory CRN. Using this method, we explore new
operating conditions and show that it can identify initial
conditions that support sustained oscillations at higher con-
centrations and at temperatures ranging from 60 to 90 °C.
We then apply the same modeling framework to a variant of
the system in which a component of the network is modified.
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Without the need for exhaustive experimentation, parameter
estimation enabled us to pinpoint conditions that support
oscillations in this modified setup. Finally, we demonstrate
how this approach allows the development of a de facto new
oscillating system with a different secondary amine at the core
of the CRN, requiring only two rounds of experiments and
parameter estimation coupled with in silico screening of initial
conditions.

Results and Discussion

The Fmoc-oscillator and Its Model

Well-mixed chemical systems can be modeled using ordinary
differential equations (ODEs) that capture the concentration
changes of each chemical species over time.[”7?%] In the case
of our Fmoc-oscillator, we previously constructed such a
model based on the combination of the four main processes
within the CRN, with an autocatalytic reaction at its core
(Figure 1a).[?] Piperidine (1) is a base that is able to
catalyze the cleavage of the Fmoc group. As a consequence,
Fmoc-piperidine (2) can undergo autocatalytic deprotection,
releasing more of 1 in the process, in a reaction of the form
of A + B — 2B (reaction II). To obtain a single pulse in
the concentration profile of 1, the latter needs to accumulate
and then undergo depletion via additional reactions. To do
so, an acetylating agent (4) reacts with 1 to form 6, lowering
the concentration of 1 back to its initial state (reaction
IIT). The system needs to be triggered by a small amount
of base that cannot be inhibited (orthogonal to the other
reactions within the CRN), and a tertiary amine (3) (reaction
I) fulfills this role. Finally, in order to keep the system out-
of-equilibrium, the reagents need to be continuously supplied
and the reaction mixture removed in a CSTR, while a
faster acetylating agent (5) is used to delay the onset of the
autocatalysis (reaction IV).

All processes described above follow second-order reac-
tion rate laws (Figure 1a) in the prescribed conditions (in
DMSO, at or > 60 °C). Therefore, the time evolution of 1 is
described by the following ODE:

d[1

M — by BIR)+ kM2~ ko ) kv TES] ()
When the reactions of (1) take place inside a CSTR, the

same kinetics apply, with an added space velocity term s, to

account for the inflow of fresh reagent (at concentration [1],)
and the outflow of reaction mixture:

—— = ky [3][2] + kn [1][2] — kmr [1] [4]

—krv [1] [S] + s ([1], = [1]) )

The remaining reactions of Figure 1 are modeled similarly,
and their ODEs are provided in the Supporting Information.
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a) Oscillator model

b) Model vs experiment: individual kinetic measurement
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Reaction Rate law
Initiation (1) iy _ k;(3](2]
dt
Autocatalysis (1) % = kp[1][2]

Slow inhibition (I11) % = —ky[1]1[4]

Fast inhibition (V) % = —kyy[1][5]

c) Model vs experiment: parameter estimation
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Figure 1. Kinetic description of the Fmoc-oscillator and model improvement via parameter estimation. Experimental data was measured by taking
aliquots of the reaction mixture and measurements by GC-FID. a) All four main processes: | initiation reaction, Il autocatalysis, Ill slow inhibition,
and IV fast inhibition, and their related rate laws. b) Comparison of an oscillation experiment for conditions ([2]o = 0.1 M, [3]o = 0.005 M,

[4]o = 1.8 M, [5]o = 0.03 M, s, = 1.00 x 10~# s™") to a model based on isolated reaction rate constants (kj = 2.02 x 1072 M s~ k; =6.0 x 107" M
s7h k=28 x103Ms™, ky = 2.2 x 102 M s7"). ¢) Comparison of the same experiment as in (b) to a model based on estimated apparent rate
constants (k=175 x 1072 M s~ ky =4.6 x 107" M s, kjy =4.5 x 1073 M s~ ky = 5.0 x 102 M s7).

Model Improvement via Parameter Estimation

To validate the model described above and demonstrate the
benefit of jointly estimating apparent rate constants from full-
system experimental data compared to inferring them from
isolated reactions, we compared the model predictions under
both estimation approaches to experimental data.

The system of ODE:s is solved as initial value problems
(IVP) using the solve_ivp package for Python from scipy.*’!
For parameter estimation with full-system data, the open-
source software COPASI was used. COPASI makes use
of an intuitive user interface to fit a kinetic model to
experimental data and provides built-in optimization methods
for parameter estimation.l®!! The constants k;, ki, and ki
(Figure 1la) were estimated, while kv was fixed at an
arbitrarily high value of 500 M s™!, as reaction IV is too fast to
reliably identify the exact value (see Supporting Information,
page 27). We then compared the predictions of our model with
parameters obtained from individual reactions (Figure 1b)
to those obtained from full-system data using parameter
estimation (Figure 1c). The model using parameters inferred
from isolated reactions does not fit well the experimentally
obtained data, particularly the period and the amplitude
of the concentration of 1, which is too high (Figure 1b).
This is due to an overestimation of the autocatalysis rate
constant. In contrast, the model with parameters obtained
using parameter estimation represents the data very well
(Figure 1c).
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The differences between the reaction rate constants
estimated individually and in full-system data can mostly be
explained by the unmodeled effects that some components
have on the system reactions. A prominent example of such
an effect is para-nitrophenol (8), which is released as a
product of the reaction between 1 and 5 and is acidic. This,
in turn, slows down all base-catalyzed reactions performed
by 1. Interestingly, this compound has little to no effect on
the initiation rate constant as it remains close to 2 x 1072
M s~! regardless of the method of rate determination and
the experimental input. This is because the trigger 3 is not
basic enough to be protonated by 8 in the tested conditions,
which explains why it is not being deactivated and why
the initiation rate constants are unaffected by the presence
of 8.

First Case Study: Changing Component Concentrations

The difference between the two models is even more striking
in an experiment in which the initial concentration [2],
was increased from 0.1 to 0.2 M (Figure 2a). The model
with individually determined rates predicted this to lead to
sustained oscillations, but the system converged to a stable
spiral equilibrium with dampening oscillations. However,
when applying parameter estimation to this new dataset and
jointly determining the rate constants, the updated model
correctly reproduced the experimental data, indicating that

© 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH
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a) Model comparison for higher initial concentration of 2
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Figure 2. Study of the reported conditions using parameter estimation and optimization to sustain oscillations in higher initial concentration of 2.
Experimental data was measured by taking aliquots of the reaction mixture and measurements by GC-FID. a) Model comparison for higher initial
concentration of 2 ([2]g = 0.2 M, [3]o = 0.005 M, [4]o = 1.8 M, [5]p = 0.060 M, s, = 1.0 x 10~* s~} using isolated reaction rate constants

(ki =2.02x102Ms " ky=6.0x10""Ms™, kyjy =28 x 103 M s, ky = 2.2 x 102 M s7") (left) and estimated apparent rate constants

(ki =236 x1072M s ky=10x10""M s, ky =107 x 107> M s~ kyy = 5.0 x 102 M s (right). b) Model prediction of sustained
oscillations using estimated apparent rate constants in tuned initial conditions (k; = 2.36 x 1072 M s™, k; =1.0 x 107" M s™", kyy = 1.07 x 1073 M
s7! ki = 5.0 x 102 M s7, initial conditions: [2]o = 0.2 M, [3]o = 0.005 M, [4]o = 1.8 M, [5]p = 0.065 M, s, = 1.00 x 10~* s71) (left) and the

experimental verification (right).

the estimated rate constants better describe the system
behavior under these new conditions.

Since the observed spiral equilibrium suggested that oscil-
lations could be achievable, we set out use these estimated
rate constants to predict suitable starting conditions by
screening in silico different initial conditions while keeping
[2]o fixed at 0.2 M. According to the updated model,
slightly increasing the initial concentration of § from 0.06 to
0.065 M would allow the system to reach a stable oscillating
regime, which was subsequently confirmed experimentally
(Figure 2b).

Opverall, besides providing new conditions for sustained
oscillations in a setting where our previous strategy had failed,
the model based on parameter estimation revealed a new
regime of oscillations, enabling the release of 1 at higher
amounts, from 12 mM (Figure 1b) up to 25 mM in this work
(Figure 2b), increasing the control we have over the system.
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Second Case Study: Changing the Temperature

Controlling the temperature in the chemical system is of
prime interest, as it allows for finer tuning of the oscillations.
However, as the temperature changes, all reaction rate
constants of the system change as well, making it hard
to anticipate which operating regime might maintain stable
sustained oscillations. Our original system was run in DMSO
at 68 °C.[?’] Here we show that, with changes in the initial
conditions, we can reach sustained oscillations at 60, 80,
and 90 °C. To estimate the new apparent rate constants
and fine-tune the initial conditions, we ran flow experiments
at different temperatures with the initial conditions of the
original system. At 60 °C, the chemical system displayed
dampened oscillations, and we used this response to estimate
the new apparent rate constants of our model. The updated
model predicted that a small change in slow inhibitor 4
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Figure 3. Optimization toward sustained oscillations at 60, 80, and 90 °C. Experimental data was measured by taking aliquots of the reaction mixture
and measurements by GC-FID. Experimental input initial conditions ([2]o = 0.1 M, [3]o = 0.005 M, [4]p = 1.8 M, [5]p = 0.03 M, s, = 1.00 x 1074 s7).
At 60 °C (rates estimated: k =1.6 x 1072 M s~ ky =7.1x 1072 M s~ kyy =6.6 x 107* M s™', kyy = 5.0 x 10?2 M s7) initial conditions picked
(1210 = 0.1 M, [3]p = 0.005 M, [4]p = 1.9 M, [5]o = 0.03 M, s, = 1.00 x 10™* s7"), at 80 °C (rates estimated: k; = 4.5 x 1072 M s™, k; = 5.1 x 107" M
s7h k=37 %103 M s~ ky = 5.0 x 102 M s, initial conditions picked: [2]p = 0.1 M, [3]o = 0.002 M, [4]p = 1.8 M, [5]o = 0.03 M,

s, =1.00 x 107* 57"), at 90 °C (rates estimated: kj =1.0 x 107" M s~ ky =9.4 x 107" M s, kyy = 4.1 x 1073 M s, kyy = 5.0 x 102 M s~ initial
conditions picked: [2]o = 0.12 M, [3]o = 0.001 M, [4]p = 1.6 M, [5]o = 0.04 M, s, = 1.00 x 107*s7").

(from 1.8 to 1.9 M) would help reach stable oscillations
over 24 h, which was verified experimentally (Figure 3,
60 °C). At 80 °C, the chemical system displayed sustained
oscillations with very short period and amplitude. Using these
experimental data to estimate new apparent rate constants
for our model, we found that reducing the amount of 3
from 0.005 to 0.002 M increased the amplitude and delay
period between piperidine peaks (Figure 3, 80 °C). Finally,
at 90 °C, the chemical system reached an equilibrium in less
than 2 h with an extremely short lag phase. By repeating
the apparent rate constant estimation, we found new initial

Angew. Chem. Int. Ed. 2025, 64, 202511413 (5 of 9)

conditions for sustained oscillations (Figure 3, 90 °C). In
summary, the method allowed us to successfully induce
sustained oscillations in our chemical system in a range of
temperatures.

Third Case Study: Changing the Slow Inhibitor
These promising results suggested that it may be possible to

use the parameter estimation-based model to find conditions
leading to sustained oscillations when greater changes are
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Figure 4. Optimization from a batch pulse to sustained oscillations using 7 as the slow inhibitor. Experimental data was measured by taking aliquots
of the reaction mixture and measurements by GC-FID. a) Effect of para-nitrophenol 8 on batch pulses and the corresponding parameter fit. Initial
conditions without 8 ([2]o = 0.1 M, [3]p = 0.005 M, [7]o = 0.15 M, [5]o = 0.005 M, s, =0s7") (k =2.5 x 1072 M s, k; =51 x 107" Ms~,

ki =7.6 x 1072 M s™, kyy = 5.0 x 102 M s7") (left) and in the presence of 8 ([8]0 = 0.025 M) (ky = 4.6 x 1072 M s™', ky =3.5x 107" M s,

ki =5.6 x 1072 M s, ky = 5.0 x 10?2 M s7) (right). b) Optimization to sustained oscillations using 7 as the slow inhibitor. Conditions picked after
model screening of initial conditions for sustained oscillations (kf = 2.5 x 1072 M s~ ky =3.5x 107" Ms~ ! kyy =56 x 1072 M s,

kiy = 5.0 x 102 M s, initial conditions: [2]o = 0.14 M, [3]o = 0.003 M, [7]o = 0.34 M, [5]o = 0.045 M, 5, = 1.25 x 10~* s™1), model prediction for the

conditions picked and its experimental verification.

introduced to the original system. To test this, we changed
the slow inhibitor 4, one of the key components of the CRN,
to a faster acylating reagent: para-chlorophenyl acetate (7).
We made this change expecting that the chloride substituent
would increase the reactivity of the acetylating agent com-
pared to 4, allowing us to work at a lower concentration of
slow inhibitor. In turn, this would change not only the reagent
but also the polarity of the reaction mixture.
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Initial data for estimating the rate constants for the new
chemical system was generated using batch experiments,
as they require less material, lower reaction times, simpler
setups, simpler tuning of conditions and lower analysis
time compared to flow experiments. To provide sufficiently
informative data for parameter estimation, we designed a
proper pulse experiment in batch conditions, displaying a
clear lag phase, exponential growth of 1 and subsequent
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Parameter estimation result on a batch pulse
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Figure 5. Optimization toward sustained oscillation using 10 as a new secondary amine. Experimental data was measured by taking aliquots of the
reaction mixture and measurements by GC-FID. First iteration: parameter estimation results from a batch pulse ([9]o = 0.1 M, [3]o = 0.005 M,

[7]o = 0.3 M, [5]o = 0.005 M, s, = 0 s™') and model screening for initial conditions. Second iteration: parameter estimation results from a damped
flow experiment (kf =23 x 1072 M s~ ky =3.6 x 1072 M s~ kjy =22 x 1073 M s, ky =1.8 x 107" M s~, initial conditions: [9]o = 0.2 M,
[3]o = 0.001 M, [7]o = 0.8 M, [5]o = 0.05 M, s, = 1.25 x 107* s7') and model screening for initial conditions. Sustained oscillations: model predicted
oscillations and experimental verification ([9]o = 0.16 M, [3]o =7.5 x 107* M, [7]o = 0.6 M, [5]o = 0.05 M, s, =1.25 x 107* s~

inhibition (Figures 4a (left) and S2). We used this data to
estimate the apparent rate constants in the network, but
parameters measured from batch pulses are not expected
to accurately predict the behavior of the CRN in flow. In
particular, the role of the fast inhibitor differs greatly between
batch and flow experiments. In batch, the fast inhibitor
controls the length of the initial lag phase and is completely
consumed. Therefore, its only role is to control when the
pulse will occur with little to no impact on the pulse itself.

Angew. Chem. Int. Ed. 2025, 64, 202511413 (7 of 9)

In a flow experiment, on the other hand, the fast inhibitor
is continuously added, altering the dynamic behavior of the
system. Thus, in flow conditions a much higher concentration
is needed than in batch. With a higher amount of the fast
inhibitor S reacting in solution comes a higher amount of para-
nitrophenol 8, which significantly slows down most processes.
To take this effect into account and to approximate flow
conditions, batch pulses can be performed with an initial
amount of para-nitrophenol 8 (Figure 4a, right). In the
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absence of 8, the estimated values of ky; and kyj are 5.1 x 107!
and 7.6 x 1072 M s™!, respectively, while in the presence of 8,
these values are 3.5 x 107! and 5.6 x 1072 M s~!. As expected,
we observed that the autocatalysis and the inhibition rates
are slower in the presence of 8. However, the observed lag
phase was much shorter compared to experiments without
8, probably due to traces of water in our para-nitrophenol,
leading to hydrolysis of 5. Expecting this effect would lead
to an overestimation of the initiation rate constant kj, we
used the k; value obtained from the batch experiment without
8 as an approximation of the trigger rate of the system,
while using the ky; and ky; values from the batch experiment
in the presence of 8 (Figure 4b). Using the apparent rate
constants described above, we then simulated the Kkinetic
model for a large number of initial conditions to identify
those initial conditions for which the system converges to a
stable limit cycle (i.e., sustained oscillations) (see Supporting
Information, page 25). To verify the model a set of conditions
were picked in the range predicted to support sustained
oscillations (see Supporting Information, page 25 for the
criteria used to pick the conditions), and the chemical system
did indeed display sustained oscillations (Figure 4b). With this
new setup, we were able to successfully reduce the amount of
slow inhibitor needed, from the 1.8 M of 4 previously reported
to only 0.34 M of 7 in this work.[?*]

Fourth Case Study: Changing the Secondary Amine

The most challenging modification of our chemical system
amounts to changing the amine at its core. This is the only
component taking part in every reaction, equating this change
to the de facto creation of a new chemical oscillator. To
further test our modeling-based approach for generating
oscillatory systems, we chose carbethoxypiperazine (10), an
amine known for its connection to potential anticancer
prodrugs,*>**! as an alternative to piperidine (1). The pres-
ence of a stable carbamate group is also of interest for further
applications due to its synthetic tunability. To highlight the
iterative aspect of our method and to remove the need for an
arbitrary additional component (addition of 8 in batch pulses
in the case study previously described) in the experiment
design, we used a single batch experiment with no additives
as experimental input for the estimation of apparent rate
constants. Similar to the third case study, an informative batch
experiment needs to exhibit a clear lag phase, exponential
growth of 10 and subsequent return to 0 M. The first attempt
at a batch pulse led to incomplete conversion of 9 and the
concentration of 10 did not go back to 0 M at 60 °C using 4
as slow inhibitor. The slower autocatalysis and low inhibition
rates compared to piperidine 1 can be explained by lower
nucleophilicity and pK,H of 10 compared to 1. To obtain
a proper pulse, we increased the temperature to 85 °C to
increase the rate of autocatalysis and used 7 to speed up
the slow inhibition, maintaining these changes for all further
experiments using 10 (Figure S4). From this batch pulse, we
estimated apparent rate constants and built a model which
we then used to scan for initial conditions from which the
chemical system converges to a stable limit cycle in a flow
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experiment (Figure 5, first iteration). However, when we
picked a set of initial conditions in the range predicted by the
model, the system converged to a stable spiral instead of a
limit cycle. Differences between batch and flow conditions are
the most likely culprits for this lack of predictive power of this
first model. However, using this unsuccessful flow experiment
as a new dataset to re-estimate the rate constants of the model
offered a new opportunity to search for initial conditions
leading to sustained oscillations in silico. When we picked a
new set of initial conditions within the range of the new model
predictions, we were able to achieve sustained oscillations
using amine 10 at the core of the CRN (Figure 5), thereby
completing the development of this new chemical oscillator.

Conclusion

In this work, we showed that joint parameter estimation
enables efficient identification of sustained oscillations in
the Fmoc oscillator across diverse conditions, offering a
robust tool for predictive design of dynamic chemical systems.
Starting from the original system configuration, we could
achieve piperidine oscillations with a higher amplitude and
a peak of 25 mM by changing the initial concentration of
two components. Next, we obtained sustained oscillations
in temperatures ranging from 60 to 90 °C. We were also
able to replace one of the key components of the CRN, the
slow inhibitor, with a faster reagent, while maintaining the
oscillations. Finally, we developed a de facto new oscillating
system with a different amine at its core and achieved
sustained oscillations in only two iterations of parameter
estimation followed by model predictions.

As these results demonstrate, mathematical modeling
of chemical oscillators followed by experimentally guided
parameter estimation based on full-system data is a highly
promising approach for designing and optimizing the chemi-
cal system under various conditions. It is also highly accessible
for the optimization of any synthetic CRN, as it relies on
open-source computing tools such as COPASI and Python.
Our method is limited by the accuracy of the mechanistic
model and the apparent rate constants. While iterative
parameter estimation can largely compensate for inaccuracies
in the mechanistic model of the oscillatory CRN, these
inaccuracies can limit the predictive accuracy of the model
if they become too large. To facilitate the design of dynamic
CRNs in the absence of precise mechanistic information,
our method could be coupled to recent advances in the
development of black-box dynamical models using machine
learning techniques. Thanks to its low computational cost,
parameter estimation can be used to fit an initial mechanistic
model of interest, which can be further improved upon with
neural network-based components to predict how the system
will behave upon a wider range of conditions.[3+-3]

Supporting Information

The authors have cited additional reference within the
Supporting Information.l’]
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