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Abstract

Machine learning-based classification approaches are widely used to predict host pheno-

types from microbiome data. Classifiers are typically employed by considering operational

taxonomic units or relative abundance profiles as input features. Such types of data are

intrinsically sparse, which opens the opportunity to make predictions from the presence/

absence rather than the relative abundance of microbial taxa. This also poses the question

whether it is the presence rather than the abundance of particular taxa to be relevant for dis-

crimination purposes, an aspect that has been so far overlooked in the literature. In this

paper, we aim at filling this gap by performing a meta-analysis on 4,128 publicly available

metagenomes associated with multiple case-control studies. At species-level taxonomic

resolution, we show that it is the presence rather than the relative abundance of specific

microbial taxa to be important when building classification models. Such findings are robust

to the choice of the classifier and confirmed by statistical tests applied to identifying differen-

tially abundant/present taxa. Results are further confirmed at coarser taxonomic resolutions

and validated on 4,026 additional 16S rRNA samples coming from 30 public case-control

studies.

Author summary

The composition of the human microbiome has been linked to a large number of different

diseases. In this context, classification methodologies based on machine learning

approaches have represented a promising tool for diagnostic purposes from metage-

nomics data. The link between microbial population composition and host phenotypes

has been usually performed by considering taxonomic profiles represented by relative

abundances of microbial species. In this study, we show that it is more the presence rather

than the relative abundance of microbial taxa to be relevant to maximize classification

accuracy. This is accomplished by conducting a meta-analysis on more than 4,000 shot-

gun metagenomes coming from 25 case-control studies and in which original relative

abundance data are degraded to presence/absence profiles. Findings are also extended to
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16S rRNA data and advance the research field in building prediction models directly from

human microbiome data.

This is a PLOS Computational Biology Methods paper.

Introduction

Evidence has linked the human microbiome, the large set of microorganisms that reside in our

body, with health and disease conditions [1]. Several diseases have been associated with micro-

biome traits and estimation of host phenotypes from microbiome composition has received

remarkable attention in the community. In this regard, growing attention has been given to

predicting host phenotypes using machine-learning based approaches, and in which adoption

of classification methodologies for case-control studies has represented the most investigated

scenario [2]. Classification represents a practical approach to implicitly integrate multiple

characteristics (i.e., features; such as the case of combination of hundreds of microbial relative

abundances) and get evaluation metrics of relatively easy interpretation. This is the case of the

area under the receiver operating characteristic curve (AUC), the most used metric in the

microbiome field for binary classification problems [2], which ranges in value from 0 to 1 with

better accuracy when moving towards one.

Focusing on case-control studies, machine learning methods have been involved in two

main types of analyses. The first has relied on applying established methodologies to newly

generated data, which has allowed researchers to provide evidence of the predictability of host

phenotypes from microbiome data for several different diseases including inflammatory bowel

disease [3], obesity [4], type-2 diabetes [5], colorectal cancer [6], and paved the way to the

potential use of the microbiome as a diagnostic tool [7,8]. The increasing number of large pop-

ulation studies [9,10] has also enabled the implementation of several (large-scale) meta-analy-

ses aiming at validating findings across independent cohorts. Besides analyses based on 16S

rRNA data [11–13], similar efforts have been extended more recently to shotgun data [14–17],

while extension to other-omics data has been more challenging [18]. The second group of

analyses has been focused on the proposal of new methodologies in two main directions:

extraction of better feature representations or optimization at classifier level [19]. While classi-

fication can be applied on the original set of features, improvements can be obtained by reduc-

ing the dimensionality of the feature space (for example by selecting or extracting specific

operational taxonomic units (OTUs) or microbial taxa). Examples include feature subset selec-

tion [20], recursive feature elimination [14], and hierarchical feature engineering [21]. Differ-

ent (supervised) methods have been adopted for classification purposes. Some widely used

strategies are represented by logistic regression [22], support vector machines (SVMs) [3], k-

nearest neighbours [23], and random forests (RFs) [14]. Comparisons among different classifi-

ers have also been performed, with ensemble methods such as RFs and extreme gradient

boosting decision trees that have exhibited in general the best performances [24]. Recently, dif-

ferent solutions based on deep learning approaches have been also proposed [25,26], including

methods to transform high-dimensional data into robust low-dimensional representations

[27], although challenges still arise due to the limited amount of labelled information that is

typically available in case-control microbiome studies [28].
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Despite the different methodologies adopted along the classification pipeline, classification

models have been typically built by considering OTU or relative abundance profiles as input

features. However, such types of data are intrinsically sparse, therefore this potentially enables

to make inferences from the presence/absence of microbial taxa rather than their relative

abundance values. This also poses the question whether it is the presence of particular taxa

rather their abundance values to be relevant for discrimination purposes. Surprisingly, this

aspect has not been investigated yet. In this paper, we aim at filling this gap by presenting a

meta-analysis on publicly available datasets from both shotgun and 16S rRNA data.

Materials and methods

The considered publicly available metagenomic and 16S rRNA datasets

In this paper, we conducted a meta-analysis on publicly available human metagenomic data-

sets for host phenotype classification. More specifically, we considered 4,128 samples coming

from 25 shotgun metagenomic studies/datasets as summarized in Table 1 and Fig 1A.

Twenty-one studies were devoted to the characterization of the gut microbiome in association

with different diseases (i.e., case-control studies). Two additional datasets were case-control

studies (peri-implantitis, mucositis, and schizophrenia) from oral metagenomes. We also con-

sidered a dataset aiming at characterizing changes in the human microbiome due to

Table 1. Summary of the 25 classification tasks derived from metagenomic datasets for case-control prediction. ACDV: Atherosclerotic cardiovascular disease, AD:

Alzheimer’s disease, BD: Behcet’s disease, CRC: Colorectal cancer, IBD: irritable bowel disease, T1D: Type 1 diabetes, T2D: Type 2 diabetes. We additionally considered

the HMP_2012 dataset [10] for body site discrimination between gut (N = 414) and oral (N = 147) samples.

Dataset name Body site # controls Cases # cases Reference

JieZ_2017 Gut 171 ACVD 214 [31]

ChngKR_2016 Skin 40 AD 38 [32]

YeZ_2018 Gut 45 BD 20 [33]

RaymondF_2016 Gut 36 Cephalosporins 36 [34]

QinN_2014 Gut 114 Cirrhosis 123 [35]

FengQ_2015 Gut 61 CRC 46 [36]

GuptaA_2019 Gut 30 CRC 28 [37]

HanniganGD_2017 Gut 28 CRC 27 [38]

ThomasAM_2018a Gut 24 CRC 29 [39]

ThomasAM_2018b Gut 28 CRC 32 [39]

VogtmannE_2016 Gut 52 CRC 52 [40]

WirbelJ_2018 Gut 65 CRC 60 [41]

YachidaS_2019 Gut 251 CRC 258 [42]

YuJ_2015 Gut 53 CRC 75 [43]

ZellerG_2014 Gut 54 CRC 61 [6]

LiJ_2017 Gut 41 Hypertension 99 [44]

IjazUZ_2017 Gut 38 IBD 56 [45]

NielsenHB_2014 Gut 248 IBD 148 [46]

GhensiP_2019_m Oral 49 Mucositis 20 [47]

GhensiP_2019 Oral 49 Peri-implantitis 23 [47]

Castro_NallarE_2015 Oral 16 Schizophrenia 16 [48]

Heitz-BuschartA_2016 Gut 26 T1D 27 [49]

KosticAD_2015 Gut 89 T1D 31 [50]

KarlssonFH_2013 Gut 43 T2D 53 [51]

QinJ_2012 Gut 174 T2D 170 [52]

https://doi.org/10.1371/journal.pcbi.1010066.t001
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consumption of cephalosporins, while the last dataset was devoted to the discrimination

between body sites (i.e., stool vs oral) in the Human Microbiome Project (HMP) dataset. Meta-

genomic samples were processed to generate species-level taxonomic profiles through

MetaPhlAn3 [29]. Species abundances are expressed as real numbers in the range [0,1] with

values that sum to 1 for each sample. Generation of relative abundances at other taxonomic

Fig 1. Classification accuracies are robust to degradation from species-level relative abundance to presence/absence profiles in shotgun

datasets. Results obtained on 25 case-control studies for host phenotype classification from human microbiomes. (A) Number of case and control

samples across the different studies. (B) AUC and (C) AUPRC scores using RF as back-end classifiers on species-level taxonomic profiles.

Comparison between relative abundance (in blue) and presence/absence (in red) profiles highlighted negligible differences and no statistical

differences in none of the studies (see S1 Fig for AUC scores and S2 Table for p-values). Metrics of comparison in terms of AUC, AUPRC,

precision, recall, and F1 are summarized in S2 Fig and S2 Table is represented a comparison between AUC and AUPCR scores. (D) Number of

statistically significant taxa from relative abundance (in blue) and presence/absence (in red) profiles.

https://doi.org/10.1371/journal.pcbi.1010066.g001

PLOS COMPUTATIONAL BIOLOGY Classification from human microbiome data is driven by the presence of microbial taxa

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010066 April 21, 2022 4 / 22

https://doi.org/10.1371/journal.pcbi.1010066.g001
https://doi.org/10.1371/journal.pcbi.1010066


levels (i.e., genus, family, and order) was also extracted from the MetaPhlAn3 output. Metadata

information in terms of disease status or body site for the HMP dataset are available in the cur-

atedMetagenomicData package [30].

We additionally analysed 4,026 16S rRNA samples coming from 30 publicly available case-

control studies (S1 Table and Fig 2A). We considered the same set of gut samples considered

Fig 2. Classification accuracies are robust to degradation from genus-level relative abundance to presence/absence profiles in 16S rRNA

datasets. Results obtained on 30 case-control studies for host phenotype classification from human microbiomes. (A) Number of case and control

samples across the different studies. (B) AUC and (C) AUPRC scores using RF as back-end classifiers on species-level taxonomic profiles.

Comparison between relative abundance (in blue) and presence/absence (in red) profiles highlighted negligible differences and no statistical

differences in none of the studies (see S5 Table for p-values) as found also in shotgun datasets (see Fig 1). Metrics of comparison in terms of AUC,

AUPRC, precision, recall, and F1 are summarized in S5 Table. (C) Number of statistically significant taxa from relative abundance (in blue) and

presence/absence (in red) profiles.

https://doi.org/10.1371/journal.pcbi.1010066.g002
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in [13] with metadata information in terms of disease status as follows: autism spectrum disor-

der (ASD), Clostridioides difficile infection (CDI), CRC, enteric diarrheal disease (EDD),

human immunodeficiency virus (HIV), IBD, liver cirrhosis (CIRR), minimal hepatic encepha-

lopathy (MHE), non-alcoholic steatohepatitis (NASH), obesity (OB), Parkinson disease, psori-

atic arthritis (PSA), rheumatoid arthritis (RA), and T1D. 16S rRNA samples were pre-

processed following the same procedure adopted in [13]. More specifically, we discarded sam-

ples with fewer than 100 reads and removed OTUs with less than 10 reads and/or present in

less than 1% of the samples. After calculating the relative abundance of each OTU, OTUs were

collapsed to genus level by summing their relative abundance values and by discarding any

OTUs which were un-annotated at the genus level.

The adopted machine learning methods

The classification tasks on both shotgun and 16S rRNA data were carried out by considering

the already developed and validated MetAML (Metagenomic prediction Analysis based on

Machine Learning) tool [14]. Main analyses were conducted by using Random Forests (RFs)

as back-end classifiers, and validations were extended to other three classifier types: support

vector machines with linear (denoted with LSVM in this paper) and RBF (denoted with SVM

in this paper) kernel, Lasso, and Elastic Net (ENet).

Free parameters of the classifiers were set as follows. For RF, i) the number of trees was

set to 500, ii) the number of features to consider when looking for the best split was equal to

the root of the number of original features, and iii) the gini impurity criterion was used to

measure the quality of a split. For Lasso and ENet, the regularization parameters were

obtained using a 5-fold stratified cross-validation approach. For Lasso the alpha parameter

was found in the set f10� 4; . . . ; 10� 0:5g with 50 uniform steps. For ENet, besides the alpha

parameter, also the L1_ratio parameter was chosen in the set [0.1, 0.5, 0.7, 0.9, 0.95, 0.99,

1.0].

Validation and evaluation strategies

We conducted two main types of analysis: i) cross-validation and ii) cross-study analysis. In

cross-validation, samples were randomly divided into k (with k = 10 in our case) folds by con-

sidering a stratified cross-validation approach to preserve the percentage of samples of each

class. Results were repeated and averaged on 20 independent runs. Different models were

trained on the same cross-validation splits. We also considered a cross-study analysis in order

to evaluate robustness of the prediction when transferring models from a source to a target

domain. In this setting, the classification model was trained on the source dataset and accuracy

was evaluated on a different independent dataset.

Classification accuracies were evaluated in terms of five main metrics: area under the curve

(AUC), area under the precision-recall curve (AUPRC), precision, recall, and F1.

We calculated mean difference and standard error for each 10-fold CV and averaged across

the 20 repetitions. We calculated the 95% confidence interval on the difference in AUC perfor-

mance between two classifiers as done in [14] using the t-distribution with df = 9:

95%CI :
1

20

1

10

P20

j¼1

P10

i¼1
ðAUC1ij � AUC2ijÞ � 2:26 x

sj
ffiffiffiffiffi
10
p ð1Þ

where AUC1ij and AUC2ij are the AUC of two classifiers in fold i of repetition j, and σj is the

standard deviation of the AUC1ij−AUC2ij across i = 1. . .10 folds in repetition j. We computed

the p-values from the t-statistics from mean difference and standard error flatten over the 20
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repetitions:

t ¼
1

20

1

10

P20

j¼1

P10

i¼1
ðAUC1ij � AUC2ijÞ

1

20

P20

j¼1

sjffiffiffi
10
p

ð2Þ

We used a two-tailed t-test with df = 9.

Experimental setting for shotgun datasets

Most of the analyses on shotgun datasets were conducted by considering a cross-validation

approach. Twenty-four classification tasks were devoted to the discrimination of healthy from

diseased subjects (i.e., case-control studies), while the HMP dataset was used to perform body

site discrimination between gut and oral samples. We also considered the ten independent

datasets associated with CRC and evaluated prediction capabilities in a cross-study setting.

Baseline results were obtained by considering the original relative abundance profiles at

species-level resolution provided by MetaPhlAn3 [29] as features and using RF as back-end

classifier. This is the setting that was successfully deployed and validated in multiple meta-

analyses such as the ones presented in [14,30,39,47]. At this point, multiple comparisons were

performed: i) starting from the original species-level relative abundance profiles (one profile

for each sample), we generated presence/absence profiles by simply thresholding the relative

abundance values at 0%. This generated a set of boolean profiles where 1 indicated the pres-

ence of the species regardless of its relative abundance in the considered sample, while 0 was

associated with its absence. The same approach based on RF was applied on this set of newly

generated profiles and compared with the results obtained on the original relative abundances.

Results are summarized in Figs 1B, 1C, S1 and S2; ii) the same procedure described in i) was

applied again by thresholding the relative abundance profiles at different values to assess sensi-

tivity of classification to low abundant species. We considered these values as threshold levels:

0.0001%, 0.001%, 0.01%, and 0.1%. Results using RF as classifier are summarized in Figs 3A

and S3A; iii) we extended the comparison done at species-level between original relative abun-

dance and boolean (with threshold = 0%) profiles to three other taxonomic levels (i.e., genus,

family, and order) to evaluate sensitivity of classification when moving from species to coarser

taxonomic resolutions. Results with RF classification are summarized in Figs 4 and S3B; iv) we

finally assessed robustness of our findings to the choice of the classification method. We com-

pared RF results with the ones obtained by other four classifier algorithms (i.e., SVM with linear

kernel, SVM with RBF kernel, Lasso, ENet) for both relative abundance and presence/absence

profiles (Figs 5 and S3C). While we report in main figures only comparisons in terms of AUC,

comparisons for the other three metrics (i.e., precision, recall, and F1) are reported in S2 Table.

Experimental settings for 16S rRNA datasets

For 16S rRNA datasets we carried out only cross-validation analyses. From the genus-level pro-

files generated as described in the section “The considered publicly available metagenomic and

16S rRNA datasets”, we generated the boolean profiles (with threshold = 0%) as similarly done

for shotgun data. We compared the two types of profiles using a RF classifier (results in Figs 2B,

2C and S4), and were then extended also to the other classifier types (results in S3 Table).

Statistical tests

On the same set of scenarios in which we compared classification accuracies, we conducted sta-

tistical tests to evaluate to which extent degradation from relative abundance to boolean profiles

can impact the identification of differentially abundant species. We used Mann-Whitney U test
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to identify the set of significant taxa when relative abundance profiles were involved, while we

adopted Fisher exact test to deal with presence/absence data. Although it is out of the scope of

the present study to perform a comprehensive evaluation of available statistical tests, further

investigation taking into account alternatives including methodologies that can deal with com-

positional issues [53,54] is warranted. Finally, false detection rate (FDR) was applied for multi-

ple testing correction, and corrected p-values < 0.05 identified significant taxa.

Fig 3. Classification accuracies are not impacted when relative abundances are thresholded up to 0.001%. Results on the 25 case-control

shotgun studies by comparing the baseline (i.e., species-level relative abundance profiles) with the presence/absence profiles generated by

thresholding at different relative abundance values (ranging from 0% to 0.1%). (A) Difference in AUC between the presence/absence and the

relative abundance RF classification result. A positive value indicates that presence/absence outperforms relative abundance data. AUC scores at

different thresholds are summarized in S2 Table. (B) Difference in number of statistically significant taxa (numbers summarized in S7 Table).

https://doi.org/10.1371/journal.pcbi.1010066.g003
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Rarefaction analysis

We further performed rarefaction analysis by: i) considering the three datasets having the

highest number of significant species from relative abundance profiles (i.e., JieZ_2017, Niel-

senHB_2014, and QinN_2014); ii) rarefying raw reads (using https://github.com/lh3/seqtk)

and considering 1M reads for each metagenome; iii) applying the same pipeline to generate

taxonomic profiles through MetaPhlAn3; iv) applying the same pipeline to build classification

models and identifying statistically significant species.

Fig 4. Classification results are more impacted to relative abundance degradation at coarser taxonomic resolution. Results on the 25 case-

control shotgun studies by comparing the baseline (i.e., relative abundance profiles) with the presence/absence profile generated by thresholding at

0.0% and varying taxonomic resolution from species to order level. Difference in AUC between the presence/absence and the relative abundance RF

classification result. A positive value indicates that presence/absence outperforms relative abundance data.

https://doi.org/10.1371/journal.pcbi.1010066.g004
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Results and discussion

In this paper, we conducted a meta-analysis aiming at evaluating to which extent degradation

from relative abundance to presence/absence of microbial taxa can impact host phenotype

classification from human metagenomes. The analysis was conducted on 4,128 public available

metagenomes coming from 25 datasets (Table 1 and Fig 1A). Metagenomes were uniformly

processed to generate species-level taxonomic profiles with MetaPhlAn3 [29] (see Materials

and Methods) with metadata information available in the curatedMetagenomicData package

Fig 5. Findings in terms of stability of the classification accuracy are robust to the classifier choice. Differences in terms of AUC between

presence/absence and relative abundance profiles for the 25 case-control shotgun datasets at varying classification algorithms. ENet: Elastic Net;

LSVM: SVM with linear kernel; SVM: SVM with RBF kernel; RFs: Random Forests.

https://doi.org/10.1371/journal.pcbi.1010066.g005
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[30]. From relative abundance profiles, expressed as real numbers in the range [0, 1], we gener-

ated presence/absence profiles by simply thresholding the relative abundance values at 0%. This

generated a set of boolean profiles where one indicated the presence of the species regardless of

its relative abundance in the considered sample, while zero was associated with its absence.

Baseline classification results replicate original findings

As baseline, we considered the classification approach that we originally proposed in [14] and

that was then used for different tasks such as detection of microbial signatures linked to colorec-

tal cancer (CRC) from human metagenomes [39], characterization of the oral microbiome in

dental implant diseases [47], and identification of changes associated with dietary interventional

studies [55]. More specifically, we considered a RF classifier applied on the species-level relative

abundance profiles, and evaluated classification accuracies in terms of multiple metrics (i.e., area

under the ROC curve (AUC), area under the precision-recall curve (AUPRC), precision, recall,

and F1) using a cross-validation (CV) approach (see Materials and Methods). We obtained vari-

able accuracies ranging from 0.56 (in terms of AUC) for hypertension in the LiJ_2017 dataset

[44] to 0.99 for IBD in the IjazUZ_2017 dataset [45], with an average AUC across the 25 case-

control studies equal to 0.83 (S4 Table). Such values were in line with what reported in the origi-

nal publications, although a fair comparison is difficult to be performed due to differences in

terms of adopted algorithms and input features. On the 17 publications that reported classifica-

tion results on the same samples here considered, we obtained an average AUC of 0.80 in com-

parison to the average of 0.83 reported in the original publications (S4 Table).

Degradation from species-level relative abundance to presence/absence

profiles does not worsen classification accuracies

We applied the same classification approach on the same set of samples to the presence/

absence profiles (Materials and Methods). In this way, we evaluated to which extent moving

from relative abundance to presence/absence information could impact classification accura-

cies. Surprisingly, we observed negligible differences between the two experimental settings

(Figs 1B, 1C and S1 and S2 Table). In both cases (i.e., using presence/absence or relative

abundance profiles), we obtained an average AUC of 0.83 (AUPRC = 0.83) across the 25 case-

control studies, with AUC and AUPRC values strongly correlated (S2 Fig; Spearman correla-

tion = 0.918). Some variations were observed at dataset-level (relative abundance outper-

formed presence/absence at a maximum of 0.06 in terms of AUC in the RaymondF_2016

dataset [34], while the opposite case was verified in YeZ_2018 [33] for an AUC difference of

0.07), however these were likely due to random perturbations and in none of the cases they

were associated with statistically significant differences (p> 0.05, S2 Table). This was also con-

firmed in terms of the other metrics of comparison (i.e., precision, recall, and F1), with no sig-

nificant differences between the two profile types (S2 Table). In a similar setting, we

performed body site discrimination (oral vs stool samples) in the HMP dataset [10], with a

value of AUC equal to 1.00 for both profile types. Therefore, such findings suggested that it

was more the presence of same taxa rather than their actual relative abundance to be relevant

for discrimination purposes.

We extended this analysis to 16S rRNA samples. More specifically, we considered the same

set of 30 case-control studies for a total of 4,026 samples that were originally collected and ana-

lysed in [13] (Fig 2A and S1 Table). We applied the same pre-processing procedure adopted

in [13] (Materials and Methods), and performed the prediction tasks by adopting the classifi-

cation pipeline already considered for shotgun data. We obtained results similar to the ones

presented in [13] on the genus-level relative abundance profiles (average AUC across the 30
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datasets equal to 0.76 and 0.74 in our analysis and in [13], respectively) (S5 Table), although

some differences could occur due to the different code implementations. By degrading relative

abundance to presence/absence profile, we obtained few differences in the classification results

between the two profile types (Figs 2B, 2C and S4 and S5 Table). Average AUC across the 30

studies was quite close (0.76 for relative abundance and 0.75 for presence/absence profiles),

with differences that were statistically significant in only 3 out of 30 cases (S5 Table). Such dif-

ferences, albeit impacting a limited number of datasets, may be due to the coarser taxonomic

resolution and the higher noise component associated with 16S data.

Statistically significant taxa are consistent between relative abundance and

presence/absence profiles

We extended the analysis from classification to identification of differentially abundant/pres-

ent taxa (i.e., possible biomarkers) through statistical testing (Materials and Methods). By

comparing the sets of statistically significant species in the different case-control studies

(q< 0.05; using Mann-Whitney U test for relative abundance and Fisher exact test for pres-

ence/absence profiles, both corrected through false detection rate (FDR), S6 Table) we found

similar numbers (Fig 1D and S7 Table), with values more driven by disease and dataset types

than average number of reads (S5 Fig). On average, we found 39 and 32 significant species

from relative abundance and presence/absence profiles, respectively. We may hypothesize that

diseases that rely on rare biomarkers are less affected by degradation to presence/absence pro-

files than the ones that are characterized by stronger community shifts in abundant and preva-

lent taxa. Although this is not sufficiently supported by our data, further investigation in this

direction is warranted.

On a per dataset basis, p-values associated with statistically significant species correlated

well between relative abundance and presence/absence profiles (S6 Fig). This was reflected

also by the high percentage of taxa (78%) that were detected as significant in both cases, which

was further confirmed by performing hierarchical clustering on the set of statistically signifi-

cant taxa coming from relative abundance and presence/absence profiles (S7 Fig). Conversely,

we identified discrepancies between case-enriched and control-enriched taxa in only 1.74% of

the statistically significant features, which were coming from just 5 of the 24 analysed datasets

(S8 Fig). Moreover, we didn’t identify any taxa for which the two tests disagreed across data-

sets (S8 Fig).

Focusing on the gut microbiome datasets, we also identified the species that were mostly

associated with disease or health (S7 Fig). The species most enriched in cases was Clostridium
bolteae (significant in 78% of the diseases), followed by Streptococcus anginosus group (55%),

Ruthenibacterium lactatiformans (55%), Hungatella hathewayi (55%), and Eisenbergiella tayi
(55%) with all of them already reported in the literature as possible biomarkers for different

disease conditions [6,13,39,41,56]. Similarly, species most enriched in controls were Anaeros-
tipes hadrus (significant in 66% of the diseases), Roseburia faecis (55%), Roseburia intestinalis
(55%), Prevotella copri (44%), and Eubacterium hallii (44%) [6,10,39,57].

Consistence between relative abundance and presence/absence outcomes was finally

obtained on the 16S data, with 20 and 15 genera that were found to be significant on average

from relative abundance and presence/absence profiles, respectively (Fig 2D and S8 Table).

Relative abundance values lower than 0.001% do not impact classification

outcomes

We evaluated how different values in thresholding relative abundance profiles could impact

classification results. We thresholded the abundances at different values (i.e., moving from a
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threshold equal to 0%—which corresponded to the presence/absence scenario discussed in the

previous section—to 0.0001%, 0.001%, 0.01%, and 0.1%, Materials and Methods), meaning

that values below the chosen threshold were forced to zero. We did not observe changes in the

classification accuracy when the threshold was set to 0.0001% and 0.001% (Figs 3A and S3A

and S2 Table). In both cases, we got an average AUC = 0.83 across the 25 case-control studies

as obtained on the relative abundance profiles and using a threshold equal to zero, and no sta-

tistically significant differences were found. This was reflected by the number of statistically

significant species (Fig 3B and S7 Table) that decreased very marginally from 32 (average

value by considering 0% or 0.0001% as threshold) to 31 (threshold = 0.001%). Although very

low abundant species may be actual biomarkers, they did not contribute to improving classifi-

cation accuracies which was likely due to the impossibility to estimate their presence and rela-

tive abundance properly as being below or close to the limit of detection, which we quantified

in this setting to be around 0.001% (with an average number of reads across our considered

metagenomes equal to 47.5M). Major differences were obtained when thresholding at higher

values (i.e., 0.01% and 0.1%). In these cases, average AUC decreased to 0.81 (threshold = 0.01%)

and 0.78 (threshold = 0.1%), with significant differences in 3 and 6 cases, respectively.

Results on rarefied reads (Materials and Methods) showed, as expected, a slight decrease

in terms of classification accuracies and number of detected biomarkers with respect to the

original data set, although patterns in function of the thresholding value when going from rela-

tive abundance to presence/absence data were confirmed (S9 Table).

Coarser taxonomic levels are less robust to profile degradation

We further tested to which extent classification accuracy was affected by the taxonomic resolu-

tion level considered to feed the classifier. By considering original relative abundance profiles,

average AUC moved from 0.83 (species-level resolution) to 0.80 (with 3 statistically significant

cases), 0.78 (6), and 0.76 (11) for genus, family, and order levels, respectively (S10 Table).

Such differences, albeit not too strong, suggested species as “optimal” level to optimize classifi-

cation accuracies, with further improvements that may be obtained—although not tested here

due to methodological limitations—with sub-species- or strain-level resolutions.

Similarly, we compared classification accuracies between relative abundance and presence/

absence profiles at different taxonomic levels. While no differences were obtained at species-

level (as already discussed in Fig 1), we observed that coarser resolutions brought increasing

AUC differences (Figs 4 and S3B and S11 Table). An average AUC difference of 0.022, 0.041,

and 0.061 was obtained for genus, family, and order, respectively (with 0, 1, and 2 statistically

significant cases, respectively). Similar patterns were observed in terms of number of statisti-

cally significant features (S7 Table).

Findings are robust to cross-study analysis and to the classifier choice

We applied the same approach on a cross-study setting. We considered the ten independent

metagenomics studies associated with CRC for a total of 1313 samples (Table 1) and applied a

leave-one-dataset-out (LODO) approach in which the model was built on all datasets but the

single dataset used for testing (Materials and Methods). As previously reported [39,41], we

observed an overall moderate decrease of the accuracy when moving from CV (average AUC

equal to 0.80) to LODO (average AUC equal to 0.76; S9 Fig and S12 Table). More importantly,

we confirmed previous findings in terms of stability of the accuracy when moving from rela-

tive abundance to presence/absence profiles at species-level resolution (Fig 6A). The average

AUC remained stable at 0.76 for the presence/absence profiles at threshold equal to 0%,

0.0001%, and 0.001%, while it decreased to 0.74 and 0.73 when thresholding at 0.01% and
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0.1%, respectively. We also confirmed that the better taxonomic resolution was associated with

smaller classification performance differences between relative abundance and presence/

absence data (Fig 6B and 6C).

We finally tested if the choice of the classification method could impact the findings

described in the previous sections in terms of degradation from relative abundance to pres-

ence/absence profiles. First, we confirmed [14] the superiority of RF with respect to other four

classification methods (i.e., Lasso [58], Elastic Net [59], and support vector machines (SVMs)

Fig 6. Degradation of relative abundance profiles does not impact LODO classification. Results in terms of leave-one-dataset-out (LODO)

validation on 10 CRC shotgun datasets. (A) AUC scores using RF as back-end classifiers on species-level relative abundance (in pink) and presence/

absence profiles generated at different threshold values. (B) Difference in AUC between species and other taxonomic-level resolutions. A negative

value indicates that species-level outperforms the comparison level. (C) Difference in AUC between presence/absence and relative abundance

classification results at varying taxonomic levels.

https://doi.org/10.1371/journal.pcbi.1010066.g006
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with linear and RBF kernels [60]) on both relative abundance (S10A Fig and S13 Table) and

presence/absence profiles (S10B Fig and S13 Table), and this was also verified on 16S rRNA

data (S3 Table). On average, thresholding of relative abundance values did not negatively

impact classification accuracies, instead it generally improved results in a quite unexpected

way (Figs 5 and S3C). Higher differences were observed for Lasso, with an average AUC equal

to 0.79 and 0.72 for presence/absence and relative abundance data, respectively, and the same

pattern was obtained for the other classifier methods (with an average difference in terms of

AUC equal to 0.05, 0.03, and 0.02 for ENet, LSVM, and SVM, respectively). We observed a

greater variability of the classification accuracies with respect to what was observed for RF clas-

sification. In fact, we obtained statistically significant differences in Lasso, ENet, LSVM, and

SVM studies for 10, 6, 5, and 6, respectively, however always in majority in favour of the pres-

ence/absence data. We therefore conclude that, despite a few differences occurred in a limited

number of cases, maximization of classification accuracies was generally made possible

through presence/absence profiles.

Conclusions

In the present study, we conducted a meta-analysis on 25 publicly available datasets spanning

more than 4,000 shotgun metagenomes and associated with different case-control studies. By

applying species-level taxonomic profiling and machine-learning based classification approaches

based on state-of-the-art methodologies we demonstrated that the presence of microbial taxa is

sufficient to maximize classification accuracies. This was accomplished by degrading original rel-

ative abundance data to presence/absence profiles by considering different threshold values. We

estimated a value of 0.001% in terms of relative abundance as limit of detection, meaning that

although very low abundant species may be actual biomarkers they were not useful to improve

classification accuracy. Results were robust to the choice of the classifier. This was obtained by

considering different traditional classification algorithms that are designed for continuous data

and potentially “suboptimal” when applied on binary data. This actually reinforces our findings,

meaning that accuracies may be even better when models on presence/absence profiles are

trained using classifiers more designed for binary data. Moreover, although doing an extensive

evaluation of existing classifiers is out of the scope of the present study, maximization of classifi-

cation accuracies may be reached by adopting other classification approaches including the ones

specifically proposed for microbiome data analysis [61,62]. Findings were finally extended from

cross validation to cross study analysis and confirmed on 16S rRNA data associated with a com-

pendium of more than 4,000 samples coming from 30 public studies.

The growing literature aiming at identifying microbial biomarkers for different diseases

opened the possibility to build non-invasive diagnostic tools from microbiome data. To this

purpose, much superior accuracy can be achieved by considering multi-feature rather than

single biomarkers diagnostic models, and in which machine learning-based classification

approaches have a fundamental role in building such models. Moreover, maximal accuracy

can usually be achieved by using a limited number of features (in the order of ten or twenty).

Such findings recently presented in the literature in addition to outcomes of our study, which

suggest that the detection of microbial taxa is sufficient to maximize classification accuracies,

are important steps toward the development of fast and inexpensive tests applied on stool sam-

ples for diagnostic purposes.

Supporting information

S1 Table. Summary of the 30 classification tasks derived from 16S rRNA datasets for case-

control prediction. ASD: Autism spectrum disorder, CD: Crohn disease, CDI: Clostridium
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difficile infection, CIRR: Cirrhosis, MHE: Minimal hepatic encephalopathy, CRC: Colorectal

cancer, EDD: enteric diarrheal disease, HIV: human immunodeficiency virus, NASH: non-

alcoholic steatohepatitis, OB: obesity, PAR: Parkinson’s disease, PSA: psoriatic arthritis, RA:

Rheumatoid arthritis, T1D: type-1 diabetes, UC: ulcerative colitis. Non-CDI controls are

patients with diarrhea who tested negative for C. difficile infection.

(XLSX)

S2 Table. Results obtained from the classification process done on the shotgun datasets.

Comparison in terms of AUC, AUPRC, F1, precision, recall between relative abundance and

presence/absence profiles at different threshold levels. Results are obtained using RF classifica-

tion at the species-level taxonomic resolution.

(XLSX)

S3 Table. Comparison in terms of AUC between relative abundance and presence/absence

profiles with different classification algorithms (RF: Random Forest; Lasso; ENet: Elastic

Net; LSVM: SVM with linear kernel; SVM: SVM with RBF kernel).

(XLSX)

S4 Table. Comparison in terms of AUC between our results (using RF classification on the

relative abundance profiles) and the ones reported in the original publications. In most of

the cases, different classifier algorithms and/or input features were used in the original analy-

sis. Original papers that did not conduct a classification analysis are not included in this table.

(XLSX)

S5 Table. Results obtained from the classification process done on the 16s datasets. Com-

parison in terms of AUC, AUPRC, F1, precision, recall between relative abundance and pres-

ence/absence profiles at different threshold levels. Results are obtained using RF classification

at the species-level taxonomic resolution.

(XLSX)

S6 Table. P-values (after FDR correction) obtained by testing differences in abundance of

each species between controls and cases.

(XLSX)

S7 Table. Number of statistically significant taxa (q< = 0.05) between cases and controls

for each shotgun dataset and at varying input features (relative abundance vs presence/

absence profiles) and taxonomic level.

(XLSX)

S8 Table. Number of statistically significant taxa (q< = 0.05) between cases and controls

for each 16s dataset and at varying input features (relative abundance vs presence/absence

profiles).

(XLSX)

S9 Table. Results obtained on three selected shotgun datasets after rarefying metagenomes

at 1M reads. Comparison in terms of AUC, F1, precision, recall, in addition to number of sta-

tistically significant taxa (q< = 0.05), between the results obtained classifying on the abun-

dances matrix and the classification made on the presence/absence boolean matrix at different

taxonomic levels (only at species level).

(XLSX)

S10 Table. Results obtained from the classification process done on the shotgun datasets.

Comparison in terms of AUC between the results obtained classifying at different taxonomic

PLOS COMPUTATIONAL BIOLOGY Classification from human microbiome data is driven by the presence of microbial taxa

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010066 April 21, 2022 16 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010066.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010066.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010066.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010066.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010066.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010066.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010066.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010066.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1010066.s010
https://doi.org/10.1371/journal.pcbi.1010066


resolution levels. The results are obtained using the RF classifier on the relative abundances

matrixes.

(XLSX)

S11 Table. Results obtained from the classification process done on the shotgun dataset.

Comparison in terms of AUC, F1, precision, recall between the results obtained classifying on

the abundances matrix and the classification made on the presence/absence boolean matrix at

different taxonomic levels (species, genus, etc).

(XLSX)

S12 Table. Results obtained by the LODO classification for datasets associated with CRC.

Comparison in terms of AUC obtained classifying thresholding the dataset at different levels

and at different taxonomic levels.

(XLSX)

S13 Table. Comparison in terms of AUC, F1, precision, recall between the results obtained

from different classifiers on the relative abundances matrix and on the presence absence

boolean matrix (only at species level).

(XLSX)

S1 Fig. Classification accuracies are robust to degradation from species-level relative abun-

dance to presence/absence profiles in shotgun datasets. Comparison in terms of AUC

between presence/absence and relative abundance profiles for the 25 case-control shotgun

datasets.

(PNG)

S2 Fig. AUC correlates well with AUPRC. Comparison in terms of classification accuracies

between AUC (area under the curve) and AUPRC (area under the precision-recall curve) for

the 25 case-control shotgun datasets and by considering relative abundance (in blue; Spearman

correlation = 0.889) and presence/absence (in red; Spearman correlation = 0.918) profiles.

(PNG)

S3 Fig. Classification accuracies are robust to degradation from species-level relative abun-

dance to presence/absence profiles in shotgun datasets. Comparison in terms of AUC

between presence/absence and relative abundance profiles for the 25 case-control shotgun

datasets by (A) thresholding at different relative abundance values (ranging from 0% to 0.1%),

(B) changing taxonomic resolution (from species to order level), and (C) changing classifica-

tion algorithm.

(PNG)

S4 Fig. Classification accuracies are robust to degradation from species-level relative abun-

dance to presence/absence profiles in 16S rRNA datasets. Comparison in terms of AUC

between presence/absence and relative abundance profiles for the 30 case-control 16 rRNA

datasets.

(PNG)

S5 Fig. Number of differentially abundant species has weak correlation with the average

number of reads. Each dot represents one of the 26 case-control shotgun studies. The number

of statistically significant species is computed on relative abundance profiles.

(PNG)

S6 Fig. P-values associated with statistically significant species correlate well between rela-

tive abundance and presence/absence profiles. Each dot represents a different taxa (i.e.,
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species) and we report only species significant in at least one of the two data types. Only data-

sets with at least ten data points are shown.

(PNG)

S7 Fig. Statistically significant taxa are consistent between relative abundance and pres-

ence/absence data on a per dataset basis. Heatmap generated on the p-values (after FDR cor-

rection; p> 0.05 in grey) obtained by applying statistical tests on the case-control

metagenomic datasets. Only the 18 datasets with at least one discriminative taxa are reported.

Left-most colorbar identifies the taxonomic class of each taxa. The two right-most colorbars

indicate the percentage of diseases for which the species resulted to be enriched in controls (in

green) and in cases (in red). This percentage is computed on a per disease basis, when multiple

datasets are available for the same disease, the taxa is considered significant when detected as

significant in at least one dataset.

(PNG)

S8 Fig. Statistically significant taxa from relative abundance and presence/absence profiles

did not disagree across datasets. We identified discrepancies between case-enriched and con-

trol-enriched taxa derived from relative abundance and presence/absence data in only 1.74%

of the statistically significant features, which were coming from just 5 datasets. No taxa dis-

agreed across datasets.

(PNG)

S9 Fig. Degradation of relative abundance profiles has a limited impact on both CV and

LODO classification. AUC scores using RF as back-end classifiers on species-level relative

abundance and corresponding presence/absence profiles in CV and LODO settings.

(PNG)

S10 Fig. RFs generally outperform other classifiers. Results on the 25 case-control shotgun

studies by considering different classification algorithms. Difference in AUC between RFs and

other classification methods on (A) the relative abundance and (B) the presence/absence pro-

files. A positive value indicates that the comparison method outperforms RFs.

(PNG)
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