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Charles Darwin: Evolutionary Relationships

Charles Darwin (1809-1882)
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Ernst Haeckel: Evolutionary Trees

Ernst Haeckel (1834-1919)
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A more recent view of the Tree of Life

Source: genome.jgi-psf.org
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Theodosius Dobzhansky: The Light of Evolution

Theodosius Dobzhansky (1900-1975)

Nothing in Biology Makes
Sense Except in the Light
of Evolution.

Dobzhansky, 1973
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Traces of Sequence Evolution

GTA A GCCG C A

tim
e

CA G C C A G A GC

C G C A GC GGA C

GA G C C C A GCC

CGCCGA GAC G

CA G C G C A GGA

AA G G C GGCAG

C A GCAG AG GA

G C ACAG A AA G

CGGA ACC AAA

C AC T GGA C AA
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Some Notation

external
branch

leaf/taxon

root

A B D E F GC

4

32

multifurcation
internal branch

bifurcation

1

inner node

external
branch

branch
internal multifurcation

inner node

B

A

C
D

E

F

G

2
3

1

bifurcation

leaves/taxa
4

Note: branch = edge = split, external node = leaf = taxon = sequence
are used interchangebly.
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Main Types of Phylogenetic Methods

Data Method
Evaluation
Criterion

Maximum Parsimony Parsimony

Characters
(Alignment)

 Statistical Approaches:

Likelihood, Bayesian


Evolutionary

Models

Distances Distance Methods

Heiko A. Schmidt Phylogenetics and Evolution



William of Ockham: The Law of Parsimony

Occam’s Razor (law of parsimony)
states:

Pluralitas non est ponenda
sine necessitate.

Plurality should not be
posited without necessity.

The principle gives precedence to
simplicity; of two competing theories,
the simplest explanation of an entity
is to be preferred.

William of Ockham (1285-1347/49)
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Maximum Parsimony (MP)

taxon 1 2 3 4 5 6 7 8 9

1: T G A A C T G T T
2: C G G A C T G C T
3: C G C A C T G C T
4: C G C A C T G T T
⇑ ⇑ ⇑

Tree a: ((1,2),(3,4))

Tree b: ((1,3),(2,4))

Tree c: ((1,4),(2,3))

4: C

3: C

2: C

1: T

2: C

2: C

3: C

1: T

3: C

4: C

4: C

1: T

C C

CC

CC

2: G

1: A

1: A

1: A

2: G

3: C

4: C

4: C3: C

4: C

2: G

3: C

G C

CC

CC

4: T

2: C

4: T 2: C

1: T

3: C

1: T

1: T

3: C

3: C

4: T2: C

T T

C C

CT
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Parsimony Informative Sites

We have seen that not all variable columns are informative for the
parsimony reconstruction.

(Parsimony) Informative Sites: 2-2-2-rule

To be an informative site for the parsimony principle the column has to
contain at least two different character states, and at least two of these
states have to occur at least twice.
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Maximum Parsimony: Fitch’s (1970) algorithm

What is the minimum of
mutations required?

* *

*

{AC}

{ACG}

{AG}{AC}

{C} {C}{A} {A} {G}

1: ...C...

1 2 3 4 5

5: ...G...
4: ...A...
3: ...C...
2: ...A...

Note: We need 1 substitution
per union in tree T (tree-length
= substitutions needed).

1 Initialize state set Sk at each leaf k
with the characters from the alignment.

2 Construct the state sets of all internal
nodes in a post-order-traversal starting
at the root.

3 Let k be the current node and i , j its
decendents, then build the intersection
of Si and Sj :

If Si ∩ Sj non-empty (∗): set
Sk = Si ∩ Sj ,
if Si ∩ SJ empty: set Sk = Si ∪ Sj and
increase the tree-length by 1.

4 Continue with the traversal until you
have reconstructed the state set Sroot of
the root of T . If we have a sequence
for the root, repeat Step 3 for its
character and Sroot .
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How to find the Most Parsimonious Tree?

Ideally we would evaluate all trees and take the one(s) with the lowest
tree-length.
However, there are too many trees. This problem affects almost every
method that aims to find trees with optimal score.
So we need other strategies (which we will see later).
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Problems with Parsimony

Parsimony is often considered model-free. This is not entirely correct.

One has no choice of a model, but nevertheless the algorithm assumes
a very simple model.

Parsimony assumes that substitutions are rare and that
back-mutations do not occur.

Although this was often true for morphological data, it is certainly not
true for distantly related DNA sequences which only have four
character states.
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Simplicity with Caution – Einstein’s Principle

Everything Should Be Made as
Simple as Possible, But Not
Simpler!

(attributed to) Albert Einstein

Albert Einstein (1879-1955)
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Distance-based methods

seq 1 A G C T T A C C T G T T A C T
seq 2 C G T A A A T T T C C C G A T
seq 3 C G C A A G T T T C C C G A T
seq 4 C A C T T A T T A G T C A A C

⇓ (Di ,j)i ,j=1,...,4

seq 1 seq 2 seq 3 seq 4

seq 1 0 11 11 8
seq 2 11 0 2 10
seq 3 11 2 0 9
seq 4 8 10 9 0
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Distance Methods: Aim

D

2 v3

v1 v4

A B C

v

Aim: Find branch lengths vb such that the sum of the branch lengths
connecting any two leaves gets close to the measured distances between all
pairs of leaves. That is, for instance

Dmeasured
A,D = v1 + v2 + v3 + v4
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Distance Methods: UPGMA

One possibility are clustering methods like UPGMA = Unweighted Pair
Group Methods using Arithmetic means.

A B C D

A 0 6 7 13
B 6 0 8 14
C 7 8 0 11
D 13 14 11 0

⇒
6.333

A B C D

3

3.75

0.75

3

2.583

Note:

In the reconstructed rooted tree all sequences are equally far away
from the root.

If the distance matrix does not comply to this, UPGMA will likely
reconstruct the wrong tree.
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Distance Methods: Neighbor Joining (NJ)

A widely used distance method is Neighbor-Joining:

1 begin with a star tree with N leaves:
B

A
F

E

D
C

X

2 For each taxon i compute the net divergence r

ri =
N∑

k=1

Di ,k

For all pairs of taxa i , j , compute rate-corrected distances

Mij = Di ,j −
ri + rj
N − 2

3 Choose the pair (A,B) that minimizes this equation.
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Distance Methods: Neighbor Joining (NJ)

4 cluster (A,B) and define an interior node W representing them:

C
D

E
F

B

A

X ⇒

C
D

A

B

W

E

X

F

5 compute the branch lengths for the external edges:

vA,W =
1

2

(
DA,B +

rA − rB
N − 2

)
vB,W = DA,B − vA,W .
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Distance Methods: Neighbor Joining (NJ)

C
D

A

B

W

E

X

F

6 compute the distances of W to the remaining N − 2 leaves k:

DW ,k =
1

2
(DA,k + DB,k − DA,B))

7 continue at step 2 with the reduced set of leaves
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Distance Methods: The NJ Tree Step-by-step

The algorithm is repeated until the tree is fully resolved:

1.

C
D

E
F

B

A

X

2. W

A

B

E
F

X

C
D

3.

A

B

X

C

E
F

W

D

4.

C

A

B

F

X

D

E

W
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The most simple tree: How to get distances?

The most simple tree could be seen as two
sequences and the distance between them.

Distances can be computed in various ways. . .
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Jukes-Cantor Correction for Multiple Mutations

GTA A GCCG C A

tim
e

CA G C C A G A GC

C G C A GC GGA C

GA G C C C A GCC

CGCCGA GAC G

CA G C G C A GGA

AA G G C GGCAG

C A GCAG AG GA

G C ACAG A AA G

CGGA ACC AAA

C AC T GGA C AA

0

8

6

2

0
10

ob
se

rv
ed

distance

8642

4

10

The substitution process is commonly modeled as a Markov process.
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The most simple tree: How to get distances?

The most simple tree could be seen as two
sequences and the distance between them.

Distances can be computed in various ways. . .

Usually via Maximum Likelihood (ML).

Ronald Fisher (1890-1962)

Joe Felsenstein (born 1942)
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Introduction: ML on Coin Tossing

Given a box with 3 coins with different levels of fairness
(
1
3 ,

1
2 ,

2
3 heads

)
We take out one coin and toss 20 times:

H,T ,T ,H,H,T ,T ,T ,T ,H,T ,T ,H,T ,H,T ,T ,H,T ,T

Probability Likelihood

p(k heads in n tosses|θ) ≡ L(θ|k heads in n tosses)

=

(
n

k

)
θk(1− θ)n−k

(here binomial distribution)

Aim: The ML approach searches for that parameter set θ for the
generating process which maximizes the probability of our given data.

Hence, ”likelihood flips the probability around.”
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Introduction: ML on Coin Tossing (Estimate)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

coin tossing: 7 heads, 13 tails

θ [probability of heads]

lik
el

ih
oo

d(
θ)

Three coin case

L(θ|7 heads in 20) =

(
20

7

)
θ7(1−θ)13

for each coin θ ∈
{

1
3 ,

1
2 ,

2
3

}
For infinitely many coins
θ = (0...1)

ML estimate: L(θ̂) = 0.1844 where
coin shows θ̂ = 0.35 heads
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From Coins to Phylogenies?

While the coin tossing example might look easy, in phylogenetic analysis,
the parameter (set) θ comprises:

evolutionary model

its parameters

tree topology

its branch lengths

That means, a high dimensional optimization problem.
Hence, some parameters are often estimated/set separately.
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Modeling Evolution

Evolution is usually modeled as a

stationary, time-reversible Markov process.

What does that mean?
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Assumptions on Evolution

Markov Process

The (evolutionary) process evolves
without memory, i.e. sequence S2
mutates to S3 during time tn+1

independent of state of S1.

A A G G C T T C A G... ...=S1

time t n

A A G C T C A G... ...G C=2S

time t n+1

A G C T C A G... ...AGT=3S
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Assumptions on Evolution

Stationary:
The overall character frequencies πj of the nucleotides or amino acids are
in an equilibrium and remain constant.

Time-Reversible:
Mutations in either direction are equally likely

πi · Pij(t) = Pji (t) · πj

This means a mutation is as likely as its back mutation.

P(i → j) = P(i ← j) (JC69)
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Substitution Models

Evolutionary models are often described using a substitution rate matrix R
and character frequencies Π. Here, 4× 4 matrix for DNA models:

A

C T

G

S

P

3’

O

H

N

N

N

H

CH3

S

P

3’

O

H

N

N

O

S

P

3’

HN

N

N

N

O

N H

H

S

P

3’

N

N

N

N

H

H

N

b

a
d c

f

e

R =

A C G T
− a b c
a − d e
b d − f
c e f −


A
C
G
T

Π = (πA, πC , πG , πT )

From R and Π we reconstruct a
substitution probability matrix P,
where Pij(t) is the probability
of changing i → j in time t.
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Relations between DNA models

equal base frequencies

JC69

2 transitions)
(transversions,
3 subst. types 6 subst. types

(4 transversions,
2 transitions)

frequencies
different base

2 subst. types
(transitions vs.
transversions)

frequencies

1 substitution type,

different base

F81

2 subst. types
(transitions vs.
transversions)

HKY85 TN93 GTR

K2P

Further modification:
rate heterogeneity: invariant sites, Γ-distributed rates, mixed.
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Protein Models

Generally this is the same for protein sequences, but with 20× 20
matrices. Some protein models are:

Poisson model (”JC69” for proteins, rarely used)
Dayhoff (Dayhoff et al., 1978, general matrix)
JTT (Jones et al., 1992, general matrix)
WAG (Whelan & Goldman, 2000, more distant sequences)
VT (Müller & Vingron, 2000, distant sequences)
mtREV (Adachi & Hasegawa, 1996, mitochondrial sequences)
cpREV (Adachi et al., 2000, chloroplast sequences)
mtMAM (Yang et al., 1998, Mammalian mitochondria)
mtART (Abascal et al., 2007, Arthropod mitochondria)
rtREV (Dimmic et al., 2002, reverse transcriptases)
. . .
BLOSUM 62 (Henikoff & Henikoff, 1992) → for database searching
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Computing ML Distances Using Pij(t)

The Likelihood of sequence s evolving to s ′ in time t:

L(t|s → s ′) =
m∏
i=1

(
Π(si ) · Psi s

′
i
(t)
)

Likelihood surface for two
sequences under JC69:

TGATCCTGAGTGAACTAAGC = s ′

TGGTCCTGACTGAACTAAGC = s

Note: we do not compute the
probability of the distance t
but that of the data D = {s, s ′}. 0.00 0.05 0.10 0.15 0.20 0.25

−
39

.0
−

38
.5

−
38

.0
−

37
.5

−
37

.0
−

36
.5

−
36

.0

branch length [subst. per site]

lo
g−

lik
el

ih
oo

d(
t)

lnL= −36.4

αt= 0.1073

Computing Likelihood Values for Trees

Given a tree with branch lengths and sequences for all nodes, the
computation of likelihood values for trees is straight forward.
Unfortunately, we usually have no sequences for the inner nodes (ancestral
sequences).
Hence we have to evaluate every possible labeling at the inner nodes:

G

C

C

C

L =
G

C

C

C
A AL +

G

C

C

C
A CL + · · ·+

G

C

C

C
G CL + · · ·+

G

C

C

C
TTL

for every column in the alignment. . . but there is a faster algorithm.
(Peeling Algorithm by Felsenstein, 1981)
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Likelihoods of Trees (Single alignment column, given tree)

For a single alignment column

and a given tree:

2:

4:

...

...

...

... ...

...

...

...

C

C

G

C

k

1:

3:A
C
G
T

A
C
G
T

A
C
G
T

6

435

21

4
d

3
d

5
d

2
d

1
d

T
G
C
A

A
C
G
T

A
C
G
TT
G
C
A

2

A
C
G
T

1

1
d

2
d

5

T
G
C
A

T

6

d
4

d
3

d
5

T
G
C
A

T
G
C
A

A
C

4

G

3

Likelihoods of nucleotides i at inner nodes:

L5(i) = [PiC (d1) · L1(C )] · [PiG (d2) · L2(G )]

L6(i) =
∏

v={3,4,5}

 ∑
j={ACGT}

Pij(dv ) · Lv (j)


Site-Likelihood of an alignment column k:

L(k) =
∑

i={ACGT}

πi · L6(i) = 0.005489

with all dx = 0.1 and Pij (0.1) =

{
.9068 i = j
.0313 i 6= j

(JC)
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Likelihoods of Trees (multiple columns)

1: C

G

4:

3:

2:

C

C

1

G

G

3

T

GG

T

T

T

2

TT

G

GG

G

C C

G

0
.0

0
5
4
8
8
5
5

C

0
.0

0
5
4
8
8
5
5

T

6

0.1

0.1

0.1

0.1 0.1

35

1

4

2

T

0
.0

0
5
4
8
8
5
5

Considering this tree with n = 4 sequences of
length m = 3 the tree likelihood of this tree
is

L(T ) =
m∏

k=1

L(k)

= 0.0054886 · 0.0054886 · 0.0054886

= 0.0000001653381

or the log-likelihood

lnL(T ) =
m∑

k=1

ln L(k) = −15.61527
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Adjusting Branch Lengths Step-By-Step

To compute optimal branch lengths do the following. Initialize the branch
lengths.
(1.) Choose a branch. (2.) Move the virtual root to an adjacent node.
(3.) Compute all partial likelihoods recursively. (4.) Adjust the branch
length to maximize the likelihood value.

1. 2. 3.
4.

Repeat this for every branch until no better likelihood is gained.

This is based on the Pulley-Principle (Felsenstein, 1981) which states that
the root can be moved on the tree but the likelihood doesn’t change.
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Number of Trees to Examine. . .

B

A
C

D

CD

BA

C D

BA

B

A C

B(n) = (2n−5)!
2n−3(n−3)!

B(10) = 2027025
B(55) = 2.98 · 1084

B(100)= 1.70 · 10182

D

A CAA

AA

B

CA

B D

CA

E

D

A

E

A

D

A

DD

C

D

CA

C

D

E

E

D

E

E

B

A

B

C

B A

E

D C

B

C

C

B

B

E

E

D

B

B

D

A

C

E

E

C

D

D

B

C

B

C

E

E

B

C

B

A

D

E

E

B
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Finding the ML Tree

Exhaustive Search: guarantees to find the optimal tree, because all trees
are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound: guarantees to find the optimal tree, without searching
certain parts of the tree space – can run on more sequences,
but often not for current-day datasets.

Heuristics: cannot guarantee to find the optimal tree, but are at least
able to analyze large datasets.
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Build up a tree: Stepwise Insertion

A

C

B BA

C D

BA

CD

A

B

C

D
-3920.21

-3689.22

-3920.98

B

D

A

C

BC

D
A

E

B

A D
C

E

BC

A D
E

B

A

C

D
E

D

A

C

B
E

B

A

C

D
E

-4710.37

-4560.70

-4521.39

-4579.17-4610.40

Is also used for other (non-ML) methods like parsimony.
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Local Maxima

What if we have multiple maxima in the likelihood surface?

Tree rearrangements to escape local maxima.
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Tree Rearrangements: Scanning a Tree’s Neighborhood

O(n 3

Tree−Bisection + Reconnection (TBR)

) TBR trees

H

A
E

F

G

D

C

B

Subtree Pruning + Regrafting (SPR)

O(n ) SPR trees2

H

G

E

F

B

D
C

A

B

A

C D

E

F

GH

O(n) NNI trees

Nearest Neighbor Interchange (NNI)

B

A

GH

E F

C

D
B

A
E

F

G

CD

H

H G

F

E

DC

A

B
full tree

F

GH

B

A

C D

E

From a current tree construct other trees by rearranging its subtrees and evaluate

all resulting trees. Repeat with the best tree found, until no better tree can be

found. This also used for other (non-ML) methods, like parsimony.
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How reliable is the reconstructed tree:

Usually programs deliver a single (best) tree, but without confidence
values for the subtrees.

How can we assess reliability for the subtree?
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Bootstrap and Consensus Tree

Bootstrapping creates many pseudo-alignments by sampling
alignment columns with replacement from the original alignment.

From the pseudo-alignment we reconstruct trees.

From the trees we collect and count all splits.

From the splits we construct a consensus tree.

Definition: A split A|B in the tree is the bipartition of the
leaves/taxa into two subsets A and B induced by removing an edge or
branch from the tree.

Definition: A trivial split is a split induced by an external branch,
because they have to be present in every tree. Otherwise a leaf would
not be connected to the tree.

Definition: Two splits A|B and C|D are compatible (i.e. not
contradictory) and, thus, fit into one tree, if at least one intersection
of A ∩ C, A ∩D, B ∩ C, B ∩ D is empty.
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Example: Chacking Split Compatibility

3

4

51

2

split 1

1 2 | 3 4 5 4 51 2 3 |

split 2

A B C D

2 4 5|

split 3

1 3

E F

split 1 vs. split 2
A ∩ C {1, 2}
A ∩ D {} ←
B ∩ C {3}
B ∩ D {4, 5}

compatible

split 1 vs. split 3
A ∩ E {1}
A ∩ F {2}
B ∩ E {3}
B ∩ F {4, 5}

incompatible

split 2 vs. split 3
C ∩ E {1, 3}
C ∩ F {2}
D ∩ E {} ←
D ∩ F {4, 5}

compatible
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Estimating Confidence: The Bootstrap

Alignment

..AGGCUCCAAA..

..AGGUUCGAAA..

B

C

D

E

F

A

..AGCCCCGAAA..

..AUUUCCGAAC..

..AGGGGUCAAA..

..AGGGGUCAAA..

..AGGGCCCAAA..

..AUUUUCCACC..

Sample 1

..GGGUUUUCAA..

..GGGUUUUGAA..

..GCCCCCCGAA..

..UUUCCCCGAA..

Sample 2

..AGUUCCAAAA..

..AGUUCCAAAA..

..ACCCCCAAAA..

..AUCCCCAACC..

Sample x

Tree 1

A

C

B

F

E

D

A

F

E

D

C

B

A

F

C

B

E

D

Tree x

Tree 2

E

D

C

B

66.7

100

A

F

66.7

100
33

B

C

D

E

F

A
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Summarizing Trees: Consensus Methods

F

E

DA

B

C

A

B

C

Tree C

Tree B

Tree A

30%

30%

40%

E

DA

B

C F

F

E

D

ABC|DEF

ABC|DEF

AC|BDEF

ABCD|EF

AC|BDEF

ABC|DEF

AB|CDEF

ABCD|EF:

AB|CDEF:

AC|BDEF:

ABC|DEF:

   40%

   30%

   60% (2x30)

 100% (all)

40%

30%

30%

EABC|DEF

F

strict consensus
A

B

C

D

100

E
ABCD|EF

A

C
semi−strict

D

B

ABC|DEF

F
30

100

C

D

E

FB

A
majority−rule

ABC|DEF

AC|BDEF

60
100

Strict consensus: contains all splits occuring in all input trees.
Semi-strict consensus: contains all splits which are not contradicted
by any tree.
Majority consensus M`: contains all splits which occur in more than `
input trees, where ` ≥ 50% typically exactly 50%.
Majority Rule extended (MRe): starting from the most to the least
frequent splits one collects compatible splits. If a split is incompatible
to the already collected ones, it is discarded and the next is examined.
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