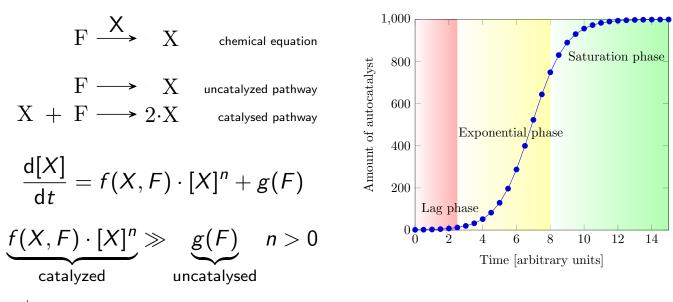


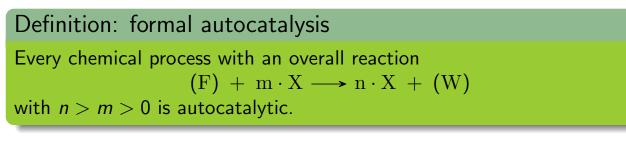
Christoph Flamm

xtof@tbi.univie.ac.at

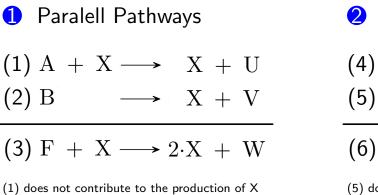
Institute for Theoretical Chemistry University of Vienna


VS 791328 Modern Bioinformatics Wien, October 28, 2020

What is autocatalysis?

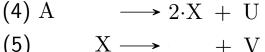

Definition[†]: autocatalytic reaction

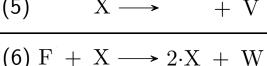
A chemical reaction in which a product (or a reaction intermediate) also **functions as a catalyst**. In such a reaction the **observed rate of reaction** is often found to **increase with time** from its initial value.



 † taken from the IUPAC Gold Book

Formal Autocatalysis




Counterexamples:

(1) does not contribute to the production of X only sharing of X no feedback!

2 Degradation pathways

(5) does not contribute to the production of X only sharing of X no feedback!

Formal autocatalysis is a very weak concept, and lacks a condition that ties the pathways more closely together!

Exclusive Autocatalysis

Can the notion of formal autocatalysis be fixed?

Definition: exclusive autocatalysis

A species ${\rm X}$ is exclusive autocatalytic if

1 X is formally autocatalytic.

2 X cannot be produced in a non-autocatalytic manner.

In other words, X cannot be produced from the food set F, unless a minute amount of X is already present at the outset.

Exclusice autocatalysis matches the intuition of autocatalysis.

Fixes the problems observed for formal autocatalysis.

Exclusive autocatalysis is a very strict concept, and discards cases which are consider to be autocatalytic.

Easy to find computationally.

What is a catalyst?

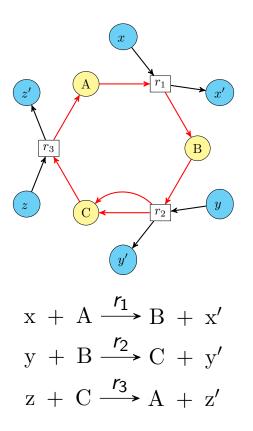
Three reactions with the same net balance.

 $F \iff X \qquad \text{uncatalyzed}$ $E + F \iff X + E \qquad \text{catalysed (by E, amount constant)}$ $X + F \iff 2 \cdot X \qquad \text{catalysed (by X, amount increases)}$

Criteria for a substance to qualify as catalyst:

- **1** stoichiometric (reactant and product in catalysed reaction).
- 2 kinetic (rate acceleration, catalysed vs spontanious process).
- **3** thermodynamic (unaltered ΔG).

Criterium 1 is necessary but not sufficent to characterize (auto)catalysis (rate acceleration!), but may be used to find potential (auto)catalysts.


(Auto)Catalyst as Sets $x + y + z \xrightarrow{\{A,B,C\}} x' + y' + z'$

- 1 Rate acceleration: $r_1 r_3$ must together proceed faster than the spontanious process.
- 2 Set of catalysts is conserved.
- **3** Each reaction involve:
 - catalysts.
 - at least 1 catalyst as reactant.
 - at least 1 catalysts as product.
- The production of a species from the set of catalysts depends on the presence of another species from the set of catalysts.

In case of catalysis, pretend the dashed arrows are not there. 3 + 4 induce the presence of a cycle. Species \bigcirc show turnover, species \bigcirc remain conserved.

The stoichiometric matrix S

	r_1	<i>r</i> ₂	r ₃
x	-1	0	0
x'	1	0	0
у	0	-1	0
у'	0	1	0
Z	0	0	0
z'	0	0	0
А	-1	0	1
В	1	-1	0
С	0	2	-1

Note that a catalyst, which enters and exits a reaction with the same stoichiometry, has also well a zero entry in S. The yellow highlighted region is a restriction of the S to the autocatalytic cycle. The species in the cyan region are considered externl to the autocatalytic cycle, and are thought to be chemo-stated.

6/13

Autocatalytic cycle: Linear Algebra View

Definition: autocatalytic cycle

A set of species M and a set of reactions R form an autocatalytic cycle if:

1 *R* contains no reversible pair of reactions.

- **2** Every $m \in M$ is educt in one, and product in another reaction.
- **3** Every $r \in R$ has at least 1 educt and 1 product in M.
- **4** \exists a strict positive integer vector w such that $S \cdot w > 0$.
- **5** *w* is minimal.

2+3 restrices M to consists only of species that are catalytic or autocatalytic arranged in a cycle.

4 states that all entries of the resul vector are non-negative, and at least 1 entry (the produced produced species) is strictly positive.

5 expresses that no smaller autocatalytic cycle can be constructed by removing a species from M.

Minimal Autocatalytic Cycles

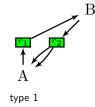
The previous definition translates into the following constrains for S to represent an autocatalytic cycle:

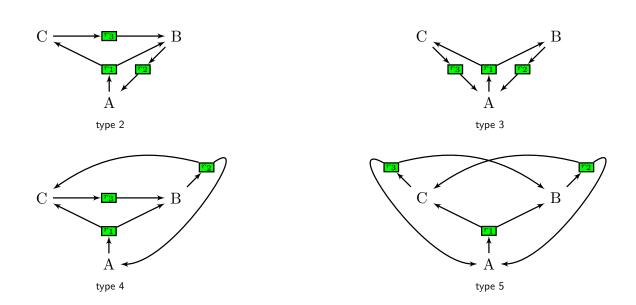
- 1 S must be a square matrix.
- **2** S must be invertible.
- \bigcirc All diagonal entries of S must be negative.
- 4 All off-diagonal entries of S must be either zero or positive.

Enumeration results in 5 matrices (autocatalytic cores)

-1	2
1	-1

-1	1	0
1	-1	1
1	0	-1

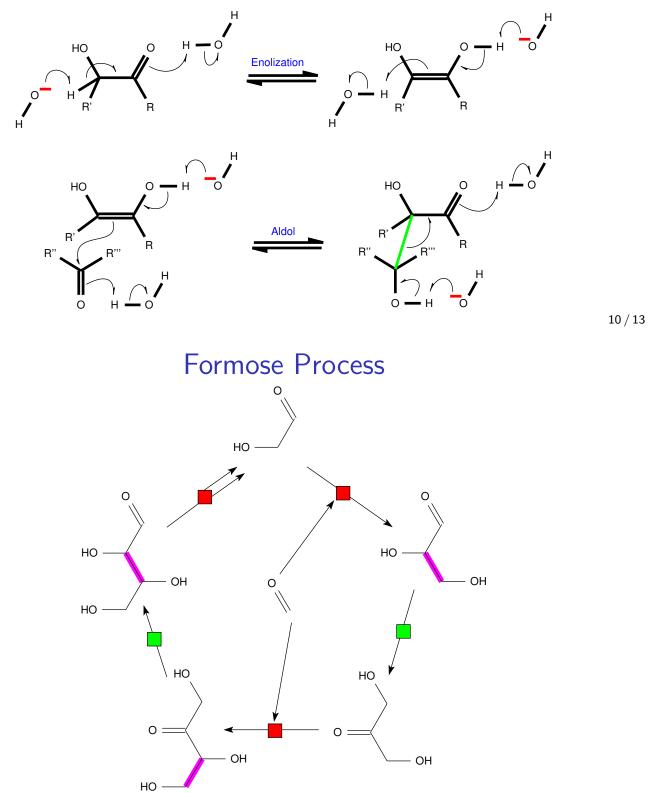

-1	1	1
1	-1	0
1	0	-1


-1	1	0	
1	-1	1	
1	1	-1	

-1	1	1
1	-1	1
1	1	-1

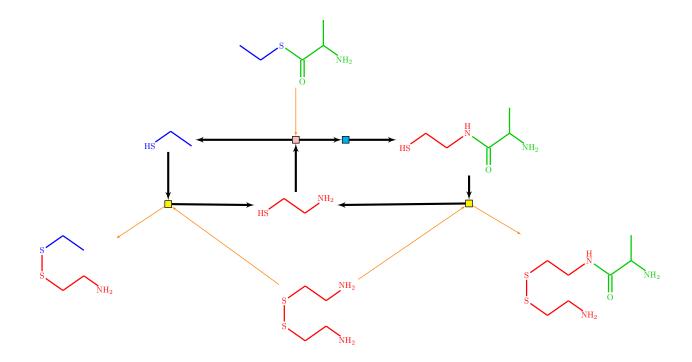
8/13

Incidence Graphs of Autocatalytic Cores



The autocatalytic cores [Blokhuis et al 2020], differ in the number of forks, reactions that split a single educt into two products. Type 1 to type 3 has 1 fork (r_1) , type 4 has 2 forks (r_1, r_2) and type 5 has 3 forks (r_1, r_2, r_3) .

Primer: Carbohydrate Chemistry $(CH_2O)_n$ Sugars are organic compounds with an C:H:O ratio of 1:2:1.


The reactivity of sugars is largely dominated by the carbonyl group (C=O) and the vicinal alcohol groups (HO-C-C-OH).

The keto-enol isomerization reaction and the aldol condensation a C-C bond formation reaction are of importance.

Type 1 autocatalytic core; \square keto-enole isomerization, \square Aldol / retro-Aldol reaction. Note that the reaction sequence from glycolealdehyde to erytrose is compressed into a single reaction (r_1) in the type 1 autocatalytic core figure. Butlerov AM (1861), Einiges über die chemische Structur der Körper, *Zeitschrift für Chemie* 4:549-560;

Amino acid thioesters, cystamine autocatalytic system

Type 3 autocatalytic core; The reaction chemistry is thiol-disulfide exchange \Box , thiol-thoester exchange \Box and native chemical ligation \Box ; orange arrows connect food or wast molecules to the autocatalytic cycle, which has a type 3 topology; cystamine (in the center) is the "autocatalyst"; [Semenov et al Nature 2016]

12/13

Further reading

Hanopolskyi AI, Smaliak VA, Novichkov AI, Semenov SN.
Autocatalysis: Kinetics, Mechanisms and Design. ChemSystemsChem 2:e2000026 (2020) doi:10.1002/syst.202000026
Blokhuis A, Lacoste D, Nghe P.
Universal motifs and the deversity of autocatalytic systems. PNAS 117 (41):25230-25236 (2020) doi:10.1073/pnas.2013527117
Andersen JL, Flamm C, Merkle D, Stadler PF.
Defining Autocatalysis in Chemical Reaction Networks. J Sys Chem 8:121-133 (2020) Preprint BIOINF 20-004
Barenholz U, Davidi D, Reznik E, Bar-On Y, Antonovsky N, Noor E, Milo R. Design principles of autocatalytic cycles constrain enzyme kinetics and force low substrate saturation at flux branch points.
eLife 6:e20667 (2017) doi:10.7554/eLife.20667
Bissette AJ, Fletcher SP.
Mechanisms of Autocatalysis. Angew Chem Int Ed 52 :12800-12826 (2013) doi:10.1002/anie.201303822
Semenov SN, Kraft LJ, Ainla A Zhao M Baghbanzadeh M, Campbell VE, Kang K, Fox JM, Whitesides GM. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature 537:656-660 2016 doi:10.1038/nature19776