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Molecular dynamics simulations
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When is computational modeling useful ?
Simulation can replace or complement the experiment:

1. Experiment is impossible Inside of stars
Weather forecast

2. Experiment is too dangerous Flight simulation
Explosion simulation

3. Experiment is expensive High pressure simulation
Windchannel simulation
Trial and error drug design

4. Experiment is blind Some properties cannot be
observed on very short time-
scales and very small space-
scales
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Simulation and experiment are complementing methods
to study different aspects of nature

experiment simulation

Resolution*

size : 1023 molecules 1      molecule

time : 1      second 10-15 seconds
*: Single molecules / 10-15 seconds possible 

(but not both in the liquid phase)

(restricted) (unrestricted)

Molecular simulation and experiment
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MOLECULAR
MODEL

Degrees of freedom: 
how much detail do 

we take into 
account?

Forces or 
interactions 

between atoms Boundary conditions

Methods to generate 
coordinates

environment
temperature

pressure
numerical 

representation

A model for molecular computations
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A molecule has a certain energy

• Point charges with an electron cloud around it
– Quantum mechanics, ab initio or semi-empirical

• Collection of balls and springs:
– Molecular mechanics, force field representation

( ) ( )Ĥ Eψ ψ=r r
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Molecular mechanical interactions

Rotation around
bond

Planar
atomgroups

van der Waals
interactions

Electrostatic
interactions-

+

-
-

Bond stretching

non-bonded 
interactions

bonded 
interactions

Angle bending
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Interacting Particles
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Physical Terms

( )  N-body polarization energypol NV r =

( )  external fields energyext NV r =

Special Interaction Terms examples

• restraints on the system:

• from experimental data

• to bias the sampling
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Energy minimisation

• Find the lowest-energy conformation of a molecule

• Compare to a marble rolling down a slope
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Different conformations
• Rotate around bonds

• One compound

• Many different conformations
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Different conformations

• Every conformation is associated with an energy, as a function of 
the positions of all particles, q = (x1,y1,z1,x2,y2,z2,…)

E = f(q) = f(x1,y1,z1,x2,y2,z2,…)

• Compare q to a point on a
multi-dimensional energy surface
(3N-6)-dimensional

• Minima are favourable conformations
• Saddel points are transition states
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Conformations on the surface

• Every conformation is represented by a specific point on the  3N-6 
dimensional surface
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Classical laws of motion

Situation at time t+Δt

Situation at time t

Force is determined by relative positions

acceleration = force / mass    

Δ velocity = acceleration� Δ t

Δ position = velocity� Δ t

force

velocity

position

Determinism …

Sir Isaac Newton
1642 -1727
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new positions

time t

time (t+Δt)

positions
velocities

forces

new velocities

... Comparable to shooting a movie of 
molecular motion...

Leap frog algorithm

Molecular dynamics
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History

Year molecular system: type, size length of the simulation 
in seconds

1957 first molecular dynamics simulation (hard discs, two dimensions)

1964 atomic liquid (argon) 10-11

1971 molecular liquid (water) 5 .10-12

1976 protein (no solvent) 2 .10-11

1983 protein in water 2 .10-11

1989 protein-DNA complex in water 10-10

1997 polypeptide folding in solvent 10-7

2001 micelle formation   10-7

2010 folding of a small protein 10-6
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Folding simulation
• Proteins are too large 

systems to simulate the 
slow folding process.

• Smaller model compounds 
can  be correctly folded on 
the computer.

ð Information about folding 
mechanisms and the 
unfolded state
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RMSD: Root mean square deviation
• A measure to 

compare two 
structures

• Here we compare 
the structures seen 
in the simulation to 
the experimentally 
determined ‘folded’ 
structure
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folding equilibrium depends on temperature 

folded

unfolded

Temperature dependency
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folding equilibrium depends on pressure 

Pressure dependency
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Formation of the complex
(camera focuses on the diamine)

Diol + Diamine + 252 CCl4 Molecules 
2.1 – 2.2.10-9 seconds

Complex formed
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Diol + Diamine + 252 CCl4 Molecules 
3.2 – 4.0.10-9 seconds

… and a nanosecond later …the molecules are free again…

Hydrogen bonds

O è N

N è O
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Hydrogen bonds

NH2

NH2

HO

HO
H

H

O
H
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H

O

N?
Cyclohexane-

diamine
Cyclopentane-

diol

δ+
δ-

δ-
δ+

Complex :

Experimental MD simulation
Benzene CCl4

ΔGb [kJ/mol] -9.3 -11.5 -10.4

Average binding strength (free enthalpy) :

Many different bindingmodes

Binding equilibrium of two small molecules
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21%
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Occurrence of different binding modes :

Life time :

• Average life time of the complex: 2.10-10 sec (max. 3.10-9 sec)
• Average life time of a hydrogen bond: 5 .10-12 sec

Experimentally hardly (or not) possible !

Results of the simulation
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Ligand binding

• We can try to calculate the 
(un)binding of a ligand

• Calculate the potential of mean 
force along the reaction 
coordinate

• Binding free energy is difference 
between bound and unbound 
values

• Information about the binding 
processes

ξ

ΔG(ξ)
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Binding processes

• Aspirin binding to cytosolic Phospholipase 2

• Umbrella sampling with distance restraints from 
the active site
GROMOS11, GROMOS 54A7 force field
31 x 10 ns, 300 K, 1 atm, SPC water

• Weighted histogram analysis (WHAM)
• Barriers along the way

ΔG0
bind (US)= -29.8 kJ/mol

ΔG0
bind (exp)= -29.6 kJ/mol
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Barriers: real or artifact?

• Centre of mass of aspirin

• Seems to get stuck behind a 
part of the protein

• Resolve
– Single path
– Reversible binding

WS 2019/2020Modern Bioinformatics

Potential of mean force
• Pulling along a ‘wrong’ path will give the correct free energy difference

– In the limit of infinite sampling
– In practice, the value is very path dependent

• Multiple paths and orientations play a role
• We want to simulate the ensemble of possible paths

• Possible solutions:
– Pull the molecule out many times
– Enhanced sampling (REMD, Local Elevation, …) to bind reversibly

real pathway
force
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Replica exchange MD
• Run simulations at different conditions
• Mix them using the Metropolis criterion (MC)
• For each of the simulations you get a correct ensemble

• Replicas differ  in, λ-dependent, Hamiltonian

• At large distances, the ligand
diffuses

• Returns via a different pathway
• Broad ensemble at every λ
• Round trips: reversible binding

Sugita, Y.; Kitao, A.; Okamoto, Y. J. Chem. Phys. 113, 6042–6051 (2000)
Figure: A. Patriksson, D. van der Spoel,  Phys. Chem. Chem. Phys., 10, 2073 (2008)
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H (p,r,λ) = K(p)+V phys (r)+V rest (r,λ)
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Distancefield coordinate

• Calculate the shortest route not through the protein

• Use a grid
Dijkstra’s algorithm to find the shortest way

•Find nearest grid point to a reference 
position

•For all neighboring points assign distance
• Penalty when moving into the protein

•Move to the next point with the smallest 
distance

•Periodicity is automatically taken care of
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Distance restraints Distancefield

Back to the example of aspirin
• Distance restraints push into the protein and distort structure
• Distancefield restraints curve around the protein
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Application of distancefield

Distancefield coordinate allows for reversible binding / unbinding

Various applications implemented in GROMOS

24 replicas
restraints at different distances
alternating switching time 2 ps
10 ns per replica

Hamiltonian replica exchange

De Ruiter and Oostenbrink, J. Chem. Theory Comp. (2013) 9:883

Local elevation / Metadynamics
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Resulting PMF and routes

ΔGbind (US)= -29.8 kJ/mol

ΔGbind (US)= -32.2 kJ/mol
ΔGbind (TI) = -30.8 kJ/mol

De Ruiter and Oostenbrink, J. Chem. Theory Comp. (2013) 9:883
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• Model system: Ubiquitin-UBM2
– Experimental (NMR) structure available

• To achieve reversible binding:
• 3 sets of λ-dependent distance restraints

– 12 between Cα at the binding site (“specific”)
– 1 between Cα-COMs of binding partners
– 2 elastic networks on each binding partner

• corresponding to a snapshot from the bound complex
• Cα-Cα distance restraints between 0.4 and 0.9 nm

• 54A8 ff, modified Gromacs 5.1.2, 1.4 nm cut-off, reaction-field, NPT, 300 
K, 1 bar, SPC water, 150 mM NaCl

Protein-protein interactions
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Thermodynamic cycle

Elastic
Network

Distance 
restraint

ΔGbind
0

V 0

Vsim
unb

ΔGen,dr
b

ΔGbind
res

ΔGen,1
u ΔGen,2

u

ΔGbind
0 = ΔGbind

res + ΔGen,dr
b + ΔGen,1

u + ΔGen,2
u + ΔGcorr

0
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Binding/unbinding
• Binding process (          )  simulated in z-coordinate only or radially
• increase in distance of restraints from 0 to 2.5 nm (λ = 0 to λ = 1)

– specific C-C distance restraints 
are turned off (n = 0, m = 2)

– COM-COM distance restraint 
is turned on (linearly)

• HREMD with time between switching attempts of 20ps
• optimized λ-spacing

– replica diffusion should give “round-trips”
– 54 unequally spaced replicas

ΔGbind
res
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Binding/unbinding

• Binding/unbinding in radial or z-coordinate (           )
– Similar results

• 50 ns of H-REMD in 54 replicas
– Free energy: 

• thermodynamic integration over λ
• Bennets acceptance ratio

ΔGbind
res
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Turning on/off elastic network
• Turn on elastic network C-C restraints from λ = 0 to λ = 1

– specific C-C distance restraints are also turned on in the complex,
– all restraints are soft at λ < 1

• HREMD with time between switching attempts of 100 ps
– 31 equally spaced replicas

ΔGen,dr
b

Complex UBM2
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Summary ΔG0
bind (kJ/mol)

System/Experiment (incl. cor.)

Simulation WT RS -36.2 � 1.1 +10.1 � 2.1 -26.1 � 2.4

Simulation WT ZS -32.6 � 2.8 +10.1 � 2.1 -22.5 � 3.5

Simulation WT ZL -35.5 � 2.1 +10.1 � 2.1 -25.4 � 3.0

Experiment: WT ITC (Cui et al. 2010) -25.1

Simulation P692A RS -33.2 � 0.6 +11.4 � 2.3 -21.8 � 2.3

Simulation P692A ZS -31.6 � 1.8 +11.4 � 2.3 -20.2 � 2.9

Simulation P692A ZL -33.9 � 1.9 +11.4 � 2.3 -22.5 � 3.0

Experiment: P692A ITC (Cui et al. 2010) -20.4

ΔGbind
res ΔGen

b/u∑ ΔGbind
0

Perthold and Oostenbrink, J. Chem. Theory Comp. 13 (2017) 5697 - 5708
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Thermodynamic cycle for binding

• Free energy is independent
of the path (state function)

• Thermodynamic cycle
• Relative free energies
• Computational alchemy

1 1
ΔGbind(1)

2 2
ΔGbind(2)

ΔG21(bound)ΔG21(free)

ΔΔGbind = ΔGbind(2) - ΔGbind(1)
= ΔG21(bound) - ΔG21(free)
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Who fits better at BOKU?
• Are there others that are more suitable?

ΔGbind(1)

ΔGbind(2)

ΔG21(bound)ΔG21(free)

• Compare two employees when they are free and at BOKU
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Gradually change one in the other

As long as the end-
states are defined, 
the intermediates 
do not have to be 

physically possible

Change ligand 1 
into ligand 2, in 

solution and when 
bound to the protein
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Example: DAAO inhibitors
• Three inhibitors of the enzyme D-amino acid oxidase were 

studied X

N
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OHR

1 2 3 X = O
4 X = S 

5 R = H
6 R = F  

 3 ->1  3 ->4  4 ->1  

Calculated values: 

Gfree 106.3 ±1.5 86.1 ±0.8 20.4 ±1.1 

Gcomplex 113.8 ± 2.2 87.3 ±3.5 36.7 ±2.0 

Gbind 7.5 ± 3.7 1.2 ± 4.3 16.3 ± 3.1 

Experimental Gbind based on: 

IC50
a 8 . 2  -0 .9  9 . 1  

IC50
b 4 . 6  0 . 1  4 . 6  

I T C  9 . 4  0 . 8  8 . 6  

SPRc  14.1  1 . 6  12.4  

 

Overall, the relative 
binding free energies are 

very well reproduced

J.H.M. Lange, J. Venhorst, M.J.P. van Dongen, J. Frankena, F. Bassissi, N.M.W.J. de Bruin, C. den Besten, S.B.A. de Beer, 
C. Oostenbrink, N. Markova and C.G. Kruse, Eur. J. Med. Chem. (2011) 46, 4808 - 4819
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Computational alchemy
• Modify one compound into another one in small steps

• In a formula:

λ= 0 è E = EA λ= 1 è E = EB

Along the way? The protein �sees� a mixture of A and B

OH

OH

OH

OH

OH

OH

OH

( , , ) (1 ) ( , ) ( , )A BEE Eλ λ λ= − +q p q p q p

1
( ) /

0
ln BE d k T

AB BG k T e λ λ λ

λ

−Δ → +

=

Δ = −∑
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Example: ER
• Relative free energy of three compounds
• In three different media (vacuum, solution, protein)
• In 11 discrete steps, forward and backward TI
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Aspirin corrections

• Binding affinity of Aspirine to phospholipase A2

• Thermodynamic integration to remove the 
interactions with the surroundings

• Three independent sets of simulations

• Correcting for electrostatic artifacts

ΔGraw 1.1 kJ/mol
ΔGdir -70.8 kJ/mol
ΔGpsum -52.0 kJ/mol
ΔGpol 94.2 kJ/mol  +
ΔGbind(calc) -27.5 kJ/mol (+/- 2.6 kJ/mol)
ΔGbind(exp) -29.6 kJ/mol

• Excellent agreement with experiment!

ΔGraw

0



WS 2019/2020Modern Bioinformatics

Summary of aspirin binding

All methods agree within the statistical error estimates and with experiment
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C
R2R1

R3

H

CH
R2R1

R3

CH
R2R1

R3

C
R2R1

R3

H

= =

ΔΔGbind = ΔGbind(R) - ΔGbind(S)
= -7.7 kJ/mol (experimental)

= ΔGinv(F483A) - ΔGinv(WT)
= -7.5 kJ/mol (simulation)

Stereospecific propranolol binding
• R- and S-Propranolol have similar affinity for CYP450 2D6
• 20 fold decrease of affinity of R-Propranolol to F483A mutant

• Free energy calculation to convert R-propranolol into S-propranolol
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Molecular picture
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WHAT IT’S REALLY LIKE TO RUN A SIMULATION
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Papers I
• J. Mol. Biol. (2017) 429, 930 - 947
• Free energy perturbation calculation of relative binding free energy 

between broadly neutralizing antibodies and the gp120 glycoprotein of 
HIV-1

Free Energy Perturbation Calculation of
Relative Binding Free Energy between
Broadly Neutralizing Antibodies and the
gp120 Glycoprotein of HIV-1

Anthony J. Clark1, Tatyana Gindin6, Baoshan Zhang3, Lingle Wang4, Robert Abel 4,
Colleen S. Murret 1, Fang Xu1, Amy Bao3, Nina J. Lu3, Tongqing Zhou3,
Peter D. Kwong2, 3, Lawrence Shapiro2, 3, Barry Honig5 and Richard A. Friesner1, ⁎

1 - Department of Chemistry, Columbia University, 3000 Broadway, MC 3178, New York, NY 10027, USA
2 - Department of Biochemistry and Biophysics,Columbia University Medical Center, 701West 168th Street, New York, NY 10032, USA
3 - Vaccine Research Center, NIAID, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA
4 - Schrodinger Inc., 120 W 45th Street, New York, NY 10036, USA
5 - Department of Biochemistry and Molecular Biophysics, Center for Computational Biology and Bioinformatics, Department of
Systems Biology, Department of Medicine, Howard Hughes Medical Institute, Columbia University, 1130 Street Nicholas Avenue,
Room 815, New York, NY 10032, USA
6 - Department of Pathology, Columbia University Medical Center, 630 W. 168th St, New York, NY 10032, USA

Correspondence to Richard A. Friesner: raf8@columbia.edu
http://dx.doi.org/10.1016/j.jmb.2016.11.021
Edited by Gerhard Hummer

Abstract

Direct calculation of relative binding affinities between antibodies and antigens is a long-sought goal.
However, despite substantial efforts, no generally applicable computational method has been described.
Here, we describe a systematic free energy perturbation (FEP) protocol and calculate the binding affinities
between the gp120 envelope glycoprotein of HIV-1 and three broadly neutralizing antibodies (bNAbs) of the
VRC01 class. The protocol has been adapted from successful studies of small molecules to address the
challenges associated with modeling protein–protein interactions. Specifically, we built homology models of
the three antibody–gp120 complexes, extended the sampling times for large bulky residues, incorporated the
modeling of glycans on the surface of gp120, and utilized continuum solvent-based loop prediction protocols
to improve sampling. We present three experimental surface plasmon resonance data sets, in which antibody
residues in the antibody/gp120 interface were systematically mutated to alanine. The RMS error in the large
set (55 total cases) of FEP tests as compared to these experiments, 0.68 kcal/mol, is near experimental
accuracy, and it compares favorably with the results obtained from a simpler, empirical methodology. The
correlation coefficient for the combined data set including residues with glycan contacts, R2 = 0.49, should be
sufficient to guide the choice of residues for antibody optimization projects, assuming that this level of
accuracy can be realized in prospective prediction. More generally, these results are encouraging with regard
to the possibility of using an FEP approach to calculate the magnitude of protein–protein binding affinities.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

Introduction

Over the past several years, there has been great
interest in the use of broadly neutralizing antibodies
(bNAbs) for both treatment and prophylaxis against
HIV-1 infection [1–6]. About 50% of HIV-1-infected
individuals produce antibodies with considerable

neutralization breadth for a wide range of circulating
HIV-1 strains after about 5 years of chronic infection
[1,2,7,8]. However, as isolated from infected donors,
most bNAbs would require high dosing to achieve
efficacy. For example, human studies with the
VRC01 antibody, which neutralizes ~90% of tested
HIV-1 strains, utilized a minimal therapeutic dosage

0022-2836/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/). J Mol Biol (2017) 429, 930–947

Article
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Papers II
• Chem. Res. Toxicol. (2019) 32, 1374 - 1383
• Binding modes and metabolism of caffeine in Cytochrome P450 1A2

Binding Modes and Metabolism of Caffeine
Zuzana Jandova,† Samuel C. Gill,‡ Nathan M. Lim,§ David L. Mobley,‡ and Chris Oostenbrink*,†

†Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, 1180 Vienna, Austria
‡Department of Chemistry and §Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697,
United States

*S Supporting Information

ABSTRACT: A correct estimate of ligand binding modes and a ratio of their
occupancies is crucial for calculations of binding free energies. The newly
developed method BLUES combines molecular dynamics with nonequilibrium
candidate Monte Carlo. Nonequilibrium candidate Monte Carlo generates a
plethora of possible binding modes and molecular dynamics enables the system to
relax. We used BLUES to investigate binding modes of caffeine in the active site
of its metabolizing enzyme Cytochrome P450 1A2 with the aim of elucidating
metabolite-formation profiles at different concentrations. Because the activation
energies of all sites of metabolism do not show a clear preference for one
metabolite over the others, the orientations in the active site must play a key role.
In simulations with caffeine located in a spacious pocket above the I-helix, it
points N3 and N1 to the heme iron, whereas in simulations where caffeine is in
close proximity to the heme N7 and C8 are preferably oriented toward the heme
iron. We propose a mechanism where at low caffeine concentrations caffeine binds to the upper part of the active site, leading to
formation of the main metabolite paraxanthine. On the other hand, at high concentrations two molecules are located in the
active site, forcing one molecule into close proximity to the heme and yielding metabolites theophylline and trimethyluretic
acid. Our results offer an explanation of previously published experimental results.

■ INTRODUCTION
Human cytochromes P450 (CYP) are oxidoreductases with a
heme cofactor that are responsible for the Phase I metabolism
of 75% of drugs in the human body.1−3 There are 57
mammalian isoforms known and their inhibition, induction, or
allosteric effects by various small molecules often lead to a
number of drug−drug interactions. Cytochromes P450
catalyze a wide variety of reactions, that are in general
improving the water solubility either of their endogenous
substrates or xenobiotics. These reactions take place at the
functional groups of the molecules, also known as sites of
metabolism (SOM). A general rule-of-thumb is that poses for
which the distance between a SOM of a molecule to the heme
iron is not more than 6 Å are considered to be active binding
modes.4,5 Here, we chose the 1A2 isoform, which metabolizes
caffeine in four positions. Caffeine is a methylxanthine
neurostimulant, acting as a competitive antagonist of adenosine
receptors, that most Europeans consume every day.6−8

Caffeine, like many other aromatic and heterocyclic amines,
is metabolized by CYP1A2.9 CYP1A2 has a relatively narrow
and planar binding site (375 Å3) suitable for accommodation
of such amines. The active site is formed by the I-helix situated
above a cysteine-bound heme with residues Phe226 and
Asp320 playing a crucial role in the kinetics of the chemical
reaction.10,11

The exact binding modes of caffeine are unknown, however
the main metabolites are known and NMR studies
investigating the binding modes and their ratios have been

reported.12 The main metabolites of caffeine are paraxanthine
(PX) accounting for about 80% of product formation,
theobromine (TB) with about 10%, theophylline (TP) with
about 5%, and 1,3,7-trimethyluretic acid (TMU) with only 1%,
all of which are biologically active and further metabolized by
cytochrome P450s,13−16 shown in Figure 1.
Regal and Nelson12 observed a shift in the metabolite ratio

with increasing caffeine concentration, making theophylline the
main metabolite at higher caffeine concentrations. CYP1A2 in
its resting state is in the high spin state (HS) which is typically
associated with a penta-coordinated heme iron in its ferric
form.17 For other CYPs, the resting state involves coordination
of a water molecule as sixth ligand to the heme iron, leading to
a (measurable) low spin state (LS). The lack of a sixth-
coordinating water molecule in the resting state of CYP1A2
might be caused by the narrow hydrophobic active site of
CYP1A2, which might to some degree hamper coordination of
a water molecule with the heme iron.
A potential substrate binds to the active site in the resting

state, potentially in a fixed orientation. For CYP1A2, it was
shown that in the presence of higher concentrations of
substrate there was an incomplete shift (∼28%) from the high
spin to the low spin state.18 Regal and Nelson12 showed that
average distances of caffeine SOMs to the heme iron are
approximately 2 Å shorter for CYP1A2 in a 100% low spin

Received: January 25, 2019
Published: May 27, 2019

Article

pubs.acs.org/crtCite This: Chem. Res. Toxicol. 2019, 32, 1374−1383

© 2019 American Chemical Society 1374 DOI: 10.1021/acs.chemrestox.9b00030
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Conclusions
• Molecular dynamics simulations form a powerful tool to study biomolecules

– Insight into structure, dynamics and function at an atomic level
– Complementary to experiment

• Free energy calculations for e.g. drug design / lead optimisation
– Binding affinities via path-sampling methods
– Binding affinities via alchemical methods

• Protein flexibility and conformational freedom is important
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