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Abstract

Direct calculation of relative binding affinities between antibodies and antigens is a long-sought goal.
However, despite substantial efforts, no generally applicable computational method has been described.
Here, we describe a systematic free energy perturbation (FEP) protocol and calculate the binding affinities
between the gp120 envelope glycoprotein of HIV-1 and three broadly neutralizing antibodies (bNAbs) of the
VRC01 class. The protocol has been adapted from successful studies of small molecules to address the
challenges associated with modeling protein–protein interactions. Specifically, we built homology models of
the three antibody–gp120 complexes, extended the sampling times for large bulky residues, incorporated the
modeling of glycans on the surface of gp120, and utilized continuum solvent-based loop prediction protocols
to improve sampling. We present three experimental surface plasmon resonance data sets, in which antibody
residues in the antibody/gp120 interface were systematically mutated to alanine. The RMS error in the large
set (55 total cases) of FEP tests as compared to these experiments, 0.68 kcal/mol, is near experimental
accuracy, and it compares favorably with the results obtained from a simpler, empirical methodology. The
correlation coefficient for the combined data set including residues with glycan contacts, R2 = 0.49, should be
sufficient to guide the choice of residues for antibody optimization projects, assuming that this level of
accuracy can be realized in prospective prediction. More generally, these results are encouraging with regard
to the possibility of using an FEP approach to calculate the magnitude of protein–protein binding affinities.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
Introduction

Over the past several years, there has been great
interest in the use of broadly neutralizing antibodies
(bNAbs) for both treatment and prophylaxis against
HIV-1 infection [1–6]. About 50% of HIV-1-infected
individuals produce antibodies with considerable
Authors. Published by Elsevier Ltd. This
nses/by/4.0/).
neutralization breadth for a wide range of circulating
HIV-1 strains after about 5 years of chronic infection
[1,2,7,8]. However, as isolated from infected donors,
most bNAbs would require high dosing to achieve
efficacy. For example, human studies with the
VRC01 antibody, which neutralizes ~90% of tested
HIV-1 strains, utilized a minimal therapeutic dosage
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of 5 mg/kg of body weight [9]. Nevertheless, bNAbs
represent a useful starting point for the development
of suitable therapeutic and prophylactic agents.
Numerous HIV-1-neutralizing antibodies, including

VRC01 [10], are directed against the gp120 surface
glycoprotein, the major cell surface extracellular
component of the HIV viral spike [3]. VRC01 is
directed against the initial binding surface on gp120
recognized by the CD4 receptor on human host cells
[11], a well-characterized site of HIV-1 vulnerability to
antibody-mediated neutralization [12]. In VRC01, the
recognition of the CD4-binding site is dominated by
the antibody second heavy chain complementarity-
determining region (CDR H2) [11]. VRC01 is the
founding member of a class of related antibodies,
the VRC01 class [13], which is characterized by the
precise targeting of CD4-binding site [11], genetic
signatures including its derivation from the VH1‐2
heavy chain gene, CDR L3 loops restricted to 5 aa in
length, and high levels of somatic hypermutation
(N30%) for effective neutralizers [4,13]. VRC01-class
antibodies have been found in numerous donors
with broadly neutralizing sera, and the recognition of
gp120 by antibodies from diverse VRC01-class
donors is similar [13].
Over the past several years, there have been

extensive efforts to optimize antibody potency for a
number of bNAbs [14–16]. While experimental
optimizations of antibodies can examine a large
number of potential candidates, they lack the
flexibility to efficiently perform a wide exploration
of possible bNAb mutants. Computational ap-
proaches can in principle complement experimen-
tal efforts by allowing an investigation of diverse
combinations of mutation sites. For computation to
make a useful impact, however, a high degree of
accuracy and reliability in binding affinity predic-
tion, coupled with a tractable computational cost,
are required. Given the complexity of the gp120/
antibody interface, this appears to be a daunting
task, which is possibly outside of the realm of
feasibility for the current state-of-the-art computa-
tional chemistry technology.
All-atom, explicit solvent-based free energy pertur-

bation (FEP) methods [17,18], employing molecular
dynamics (MD) simulation methodology, constitute
the most rigorous physics-based approach to the
computation of binding free energies in complex
biological systems. Historically, it has been difficult
to perform accurate, converged FEP simulations, due
to inadequate computing power, errors in molecular
mechanics force fields, and inability of sampling
algorithms to escape from local minima [19–21].
Over the past decade, these problems have been
effectively addressed: the first by Moore's law and the
advent of the use of graphics processing units (GPUs)
for computation, the secondbymajor improvements in
force field quality, and the third by advanced sampling
algorithms such as the replica exchange solute
tempering (REST) method, which employs a version
of local heating to enhance sampling in the region of
the perturbation [17,22,23]. In a recent publication, we
have shown that for the binding of small-molecule
ligands to a variety of pharmaceutically interesting
target proteins, our current FEP implementation is
capable of achieving an RMS error (RMSE) on the
order of 1 kcal/mol using a tractable amount of GPU
resources [18]. These results have established FEP
as a practical methodology for structure-based drug
discovery projects.
While the use of FEP to assess protein–small-

molecule ligand binding affinities has a long history,
there have been relatively few attempts to apply the
methodology to the calculation of protein–protein
binding [24–26]. The interface between two proteins
is typically larger and significantly more complex
than that between a protein and a small-molecule
ligand, suggesting that the sampling effort required to
reliably converge such FEP calculations might well
be substantially larger than that for protein–small-
molecule binding. On the other hand, the results
should depend only on the quality of the protein force
field, so that the small-molecule ligand force field (for
which it is quite challenging to attain robust coverage
of chemical space) is eliminated as a possible source
of error. On this basis, one might expect the modeling
of protein–protein interactions via FEP to be a feasible
undertaking, provided that the sampling challenges
can be surmounted.
The objective of the present paper is to investigate

the use of FEP methodology in modeling the binding
of the VRC01-class bNAbs to gp120. The calcula-
tions were compared to alanine-scanning data in
which the effects of antibody interface mutants on
gp120 binding were quantified by surface plasmon
resonance measurements. We attempt to predict the
changes in binding free energy of antibody–gp120
complexes upon the mutation of the various interface
residues of the antibody using FEP/REST. Three
alanine scandata sets represent three initial antibodies
from two different donors (VRC01 and VRC03 from
NIAID donor 45 [10], and VRC-PG04 from IAVI donor
74 [4]). We consider all mutations studied experimen-
tally other than those involving a net change in charge;
one case is of a residue that is a terminus of its chain in
the crystal structure used, and four proline mutants,
which all were found to have experimental changes in
binding affinity less than 0.5 kcal/mol in magnitude.
Calculations on prolines would require significant
technical effort to implement because of the need to
alchemically change topologies from a ring structure to
a linear backbone in such mutations, while mutations
involving a change in net charge pose a significantly
greater challenge to FEP than mutations that do not
involve such a change. We and others have been
developingmethods to address changes in net charge
[27,28]; however, the methodology is still in the
process of being tested. The total number of test
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cases, 55 in all, is sufficient to draw useful conclusions
concerning performance.
Although the focus of the present effort is on

optimizing and evaluating the FEP methodology,
there are a number of other important issues that
must be addressed if the system employed in the
experiments is to be properly modeled. Firstly, while
crystal structures exist for the antibodies in complex
with gp120, the binding experiments were performed
with a gp120 variant, which had a slightly different
sequence than the one that was crystallized. This
necessitated the construction of a homology model
of the complex starting from the crystal structure.
Secondly, the surface of the gp120 is decorated by
numerous glycan residues, which are known to be
important in the biological function of gp120 and in
antibody binding. The characterization of the general
glycan content has seen some recent progress
[29,30], but the precise chemical composition of the
glycans in the experimental system used to measure
binding affinity is not known. In an attempt to take
glycans into account, we used the fragment of one
particularly important glycan, NAG776, in the binding
region observed in the crystal structure of the gp120
proteins used in building the homology models
employed in this study. Inclusion of NAG776 is
critical in obtaining the accurate prediction of free
energy changes for a subset of mutations.
Once these two issues are addressed, the major

remaining challenge is the modification of the
standard sampling algorithm developed for small
molecules so that it can handle the protein–protein
interface. In the current study, we found one principal
requirement to be the use of greatly increased
simulation times for tryptophan (trp) residues,
which, when mutated to alanine, frequently induce
relatively large changes in the protein structure due
to their considerable bulk. A second problem is
manifested when a glycine (gly) residue is mutated
to alanine. In this case, the larger alanine residue
can induce a nontrivial change in the loop on which
the residue is located and/or in the surrounding side
chains, and the MD algorithm may have difficulty
overcoming the sampling barriers to properly explore
alternate conformations. We address this problem
by using continuum solvent-based loop prediction
methods to generate predictions of the structure
after mutation and then by employing these predic-
tions as an initial guess in the FEP simulations.
From the above, it should be apparent that obtaining

experimentally relevant results for the systems of
interest represents a considerable modeling chal-
lenge, beyond simply deploying a standardized FEP
protocol. We view the present work as an extensive
exploration of the various dimensions of the problem,
as opposed to a demonstration that a robust,
automated protocol is in hand suitable for application
to an arbitrary protein–protein interaction problem
without modification. With that caveat, the results
shown below are quite encouraging with regard to
the application of FEP methods to the prediction of
protein–antibody interactions and specifically to
modeling bNAbs bound to gp120. Prospective results,
in which the calculations are done prior to experimen-
tal measurements, will be required to draw stronger
conclusions.
The paper is organized as follows. The Results

section first presents the brief descriptions of the
bNAbs that were studied, then experimental
results for the three antibody/gp120 binding affinity
data sets, followed by comparisons to results
obtained with FEP. In addition to reporting FEP
results run using both a baseline default protocol
and a protocol including several improvements, we
also present results using a simple empirical model,
FoldX [31], which provides a reference point to assess
the value of the more elaborate and computationally
expensive FEP approach. The Discussion section
considers the successes, failures, and uncertainties
observed for the data sets investigated and outlines
the efforts that will be needed to construct a robust and
efficient general methodology for modeling protein–
protein interactions. TheModels andMethods section
describes the models and methodology used to
perform the calculations, including experimental
techniques, homology model building, treatment of
glycans, loop and side-chain predictions, and FEP
protocols. Finally, in the Conclusion, we summarize
our results and discuss future prospects of the
approach.
Results

Test systems studied and experimental binding
affinities

Three VRC01-class bNAbs were considered, for
which experimental alanine scans with quantification
of binding affinities using an Octet biosensor were
performed (Table S1 in the Supplementary Data):
VRC01 and VRC03 [10]—members of the same
antibody lineage from NIAID donor 45—and VRC-
PG04 from IAVI protocol G donor 74 [4]. Briefly,
antibodies and mutants were bound to the Octet tip
surface, and core gp120 were passed over the
surface and sensograms recorded. Kds were deter-
mined by fitting to a 1:1 binding model (see Models
and Methods). Estimated binding free energies
typically fell within an uncertainty range of about
0.5 kcal/mol (see Table S2 of the Supplementary
Data for details). Figure 1 presents all of the sites of
mutation experimentally studied for each of the three
antibodies listed above.
In this paper, we consider only the mutations of a

neutral side chain to alanine. Figure 2 shows the
experimentally determined ΔΔG value for the 55



Fig. 1. Antibody-gp120 interface residues of VRC01,
VRC03, and VRC-PG04 antibodies. Antibody-binding
interface is in surface representation with residues colored
as follows: Red, ΔΔG N2 kcal/mol; Orange, ΔΔG 1 to
2 kcal/mol; Yellow, ΔΔG 0.5 to 1 kcal/mol; Gray, ΔΔG −
0.5 to 0.5 kcal/mol; Blue, ΔΔG b−0.5 kcal/mol. Light chain
residue numbers are italicized. Antibody non-interfacial
residues are in cartoon representation colored pale blue
(heavy chain) and green (light chain).
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neutral residues included in the test set on the
binding interface of the three antibodies. Most of
these mutations lead to similar or weaker binding
affinity, which is unsurprising given that for the most
part, larger residues were mutated to alanine. A
more extensive description of the experimental
protocols, including error estimation, is provided in
the Models and Methods section below.

Model structures for the three experimentally
relevant complexes

No crystal structures are available for these
three antibodies in complex with the gp120
resurfaced stabilized core 3 (RSC3) [10] protein
used in the Octet biosensor experiments we
report. Therefore, a homology model of the RSC3
protein in complex with each antibody was
constructed from an existing crystal structure for
each antibody—the protein data bank (PDB)
number 3NGB for VRC01, and numbers 3SE8
and 3SE9 for VRC03 and VRC-PG04, respectively.
Further details of themodel are provided in theModels
andMethods section. Aligned comparisons of the part
of the three antibody sequences that contain residues
that contact the gp120 protein in the bound complex
are presented in Fig. 2. The structure of the antibody
heavy and light chains is from the crystal structure in
each case.
The gp120 glycoprotein is known to be heavily

glycosylated, with glycosylation playing an important
role in shielding HIV-1 from immune response
[11,29,30,32,33], and in some cases, differences in
glycan interactions between the wild-type and
mutant residues may substantially affect the relative
binding affinity arising from sequence mutations.
Examination of the crystal structures identified one
glycan fragment, residue N-acetylglucosamine
(NAG776, attached to glycosylated residue N276),
with direct interactions with residues in the binding
interface in all three of the crystal structures. While
some recent structures have been solved for bNAbs
with the full glycan structure present [33–37], the
structures for the bNAb–gp120 complexes used as
templates in building homology models for the bNAbs
in this study were solved using a truncated version of
the glycan species (i.e., with a deglycosylated
protein), so only a single asparagine-attached
N-acetylglucosamine remained for each glycan. In
contrast, experimental binding affinity measure-
ments were performed using a fully glycosylated
protein and so glycans had tails (containing addi-
tional sugar residues) attached to the moiety
observable in the crystal structure. However, it is a
reasonable approximation to assume that the inter-
action of the tail with the protein residues is minimal.
However, the sugar moiety close to the surface
represented by NAG776 in the crystal structure is
likely to interact directly with the bound antibodies,



Fig. 2. Sequence comparison for the heavy and light chains of the VRC01, VRC03, and VRC-PG04 antibodies. Alanine
substitutions, with the resultant experimentally determined antibody gp120 binding free energy changes, are highlighted
as follows: Red, ΔΔG N2 kcal/mol; Orange, ΔΔG 1 to 2 kcal/mol; Yellow, ΔΔG 0.5 to 1 kcal/mol; Gray, ΔΔG −0.5 to
0.5 kcal/mol; Blue, ΔΔG b−0.5 kcal/mol. ΔΔG values for cases included in the test set are listed below each mutated
residue. Strong and moderate glycan contact residues are boxed with black and green.
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and for this reason, we used the NAG776 core to
account for glycan effects on binding.
NAG776 is sufficiently distant from many of the

mutation sites that it is likely to have little or no impact
on relative binding affinities. Other sites are much
closer; in some cases, these are in direct contact with
the glycan. We used a scoring function to classify
each site into one of the three categories: close
interaction, moderate interaction, and minimal inter-
action. The classification function, based on atomic
contacts, is described inmore detail in theModels and
Methods section. Based on the contact scoring of the
wild type system in a short MD simulation (seeModels
andMethods for further information), 11 residueswere
classified as having strong interactions (boxed in
black in Fig. 1), 6 residues were classified to have
moderate interactions (boxed in green in Fig. 1), and
the remaining 38 were classified as having insig-
nificant interactions. We investigated the effect of
the presence of the glycan on the strong and
moderate interaction cases; results are shown later
in this section. We found that large effects were
manifested only for strong interaction cases; for the
6 moderate interaction cases, the impact of the
glycan on free energy changes was around
0.1 kcal/mol change in the RMSE, while the net
effect on the RMSE for the 11 strong contact cases
was more than 1 kcal/mol. Based on this evidence,
we concluded that it was safe to ignore the glycan
for the insignificant interaction cases and have done
so in what follows.

Default small-molecule FEP protocol

As an initial calibration point, we present results
obtained from running the default FEP protocol
utilized for small-molecule binding affinity prediction
in Ref. [18], with a modestly increased simulation
time to account for the significantly more complex
interface structure. This protocol forms the starting
point of our methodology; modifications designed to
address specific problems found in default simula-
tions are described in subsequent sections below.
Details of the default protocol are given in the Models
and Methods section.
In all cases shown here, only the side chain of the

residue involved in the mutation was included in the
REST region. Control simulations performed without
REST on a significant subset of mutation cases
indicated that the overall effects of this REST scheme
inmost of the alanine scan cases are small, but at least
one case appeared to show significant improvement
with REST (see Supplementary Data Table S4). Since
there is negligible additional cost in simulation efficien-
cy including REST over FEP alone, it was retained in
all cases. Each calculation was repeated to reduce
random noise arising from the Monte Carlo replica
exchange algorithm. The OPLS3 protein force field



Table 1. RMSE and correlation coefficients for the default
protocol

RMSE
(kcal/mol)

Correlation
coefficient

Worst outlier

VRC01 0.64 0.71 L_Y28: 1.61 kcal/mol
VRC03 1.72 0.23 L_F91: 2.70 kcal/mol
VRCPG-04 1.18 0.12 H_G54: 3.19 kcal/mol
combined 1.19 0.28 H_G54: 3.19 kcal/mol
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was used for all simulations [38]. Recent tests,
reported in Ref. [48], have shown that OPLS3 provides
state-of-the-art performance with regard to protein and
peptide stability. Furthermore, small-molecule FEP
calculations have validated the ability of the force field
to properly respond to ligandperturbation.Wenote that
in our comparisons in Ref. [48], the CHARMm force
field displayed a performance that was very similar to
OPLS3 and thus would be likely to yield similar results
to those presented below.
The homology models (see the Models and

Methods section for further details) were used to
carry out the calculations. We included the NAG776
glycan residue in the 17 cases identified as having
close or moderate contacts with the residue being
mutated, whereas it was not included for the
remaining 38 cases. This aspect of the protocol
was employed in all of the calculations that follow.
Table 1 displays the RMSEs and correlation

coefficients, with the experimental results for the
three data sets (VRC01, VRC03, and VRC-PG04)
under the default protocol, and the largest outliers for
each of these data sets. The overall results
(particularly those for the VRC03 antibody) are
significantly degraded from the most recent small-
molecule data reported in Ref. [18]. Furthermore,
assuming robust sampling, one would expect thatthe
RMSE for protein–protein interactions should be
smaller than for small-molecule perturbations, which
additionally depend upon the quality of the small-
molecule force field in representing highly diverse
chemistry.
These results are not surprising, given the consid-

erations discussed above. The default run time of
10 nsec (for each window in each FEP simulation leg)
may not be adequate for all of the test cases, and
some mutations may involve significant changes in
Table 2. Summary of the five TRP-NALA cases in the data se

Case Experimental ΔΔG 10-ns FEP/REST ΔΔ

VRC01 W100B 4.45 4.39
VRC01 W50 1.28 0.61
VRC01 W47 1.19 1.71
VRC03 W50 1.33 4.36
VRC03 W54 0.76 3.46

In three of the five cases, significant improvement is obtained from i
kcal/mol.
loop geometry or local side-chain conformations,
which necessitate measures going beyond longer
run times in order to achieve a suitable transition from
the initial to final loop structure. We conclude from this
data that improvements in the sampling protocol are
needed if the most quantitatively accurate results are
to be obtained. In the following section, we outline
several such improvements based on the analysis of
the default protocol results.

Extended sampling for Trp mutations and
glycan contacts

Examination of the largest outliers in the default
protocol results revealed that cases in which a
tryptophan residue was mutated to alanine displayed
errors much larger than the average. This observation
led to the hypothesis that the sampling of Trp
mutations may require significantly longer simulation
time. As a simple test of this hypothesis, all tryptophan
simulations were extended to 100 ns. To avoid
complicating issues, we consider here the five TRP
cases not identified as strong glycan contacts. Two
independent 100 ns runs were averaged for these
cases. The reduction ofRMSE for this subset resulting
from extending the simulation timewas dramatic, from
1.85 kcal/mol to 0.97 kcal/mol. Results for individual
cases can be found in Table 2.
Running totals for the free energy change as a

function of simulation time are displayed in Figs. 3
and 4 for the example cases of the mutation of W50 in
VRC03 and of W100B in VRC01. In four of the five
TRP cases, the bound complex simulation leg shows
a significant downward relaxation in predicted ΔG
over the course of the run. The relaxation process is
quite slow, and there can be some residual fluctuation
in ΔΔG at 100 nsec in some cases. However, the
RMSE after 100 nsec, averaged over all cases, is
comparable to that for the remainder of the data set, so
extending the simulations further is unlikely to yield
systematically better results, given the current force
field quality and level of experimental error.
In the case of VRC01-W100B, the unbound

(solvent) leg of the simulation also changed signifi-
cantly with the longer simulation. The net result is that
the longer simulations led to a comparable prediction
as opposed to a smaller one. This was due to the
t, which are not strong or moderate glycan contact cases

G 100-ns FEP/REST ΔΔG Change in absolute error

4.59 0.08
0.33 0.28
1.12 −0.45
2.68 −1.68
2.16 −1.30

ncreased simulation time. All values are free energies in units of



Fig. 3. Running free energy for the W50 case on VRC03,
averaged over two independent trials of both simulation legs.
Slow convergence is observed in the bound complex leg.

936 FEP of Relative Binding Free Energy
removal of W100B allowing a large-scale rearrange-
ment of the CDR H3 loop, which is at the interface of
both theheavychain andantigenandalso theantibody
heavy and light chains. This relaxation may take place
on an even slower time scale than the 100-ns time
scale can fully capture. It appears, however, that most
of the fluctuation in ΔΔG relaxed by 100 ns, and only
the intra-antibody relaxation was continuing at 100 ns,
making further extension unlikely to capture more net
effect on the relative binding affinity. This case will be
discussed in further detail in the subsection “Insights
from FEP trajectories”.
We next investigated how the NAG776 glycan

influenced the 17 cases identified above as having
close or moderate contact with this moiety. Three
sets of results are shown in Table 3 below. Firstly, we
present the results of the default protocol for each of
the 17 cases. Secondly, we present results in which
Fig. 4. Running free energy for the W100B case on
VRC01, averaged over two independent trials that were
performed for this case. Slow convergence time scales are
observed for both the bound and unbound legs of the
simulation.
the glycan is removed from the structure, still
employing the default simulation protocol. Finally,
results in which the glycan is retained, but the
simulations are extended to 100 nsec, are given.
The principal effects are seen for the strong contact
cases; those with moderate contact evidence
primarily relatively small fluctuations when the
glycan is deleted or when the simulation extended.
In the strong contact cases, both the glycan's
presence and the extended simulation times were
required to achieve good agreement with the
experiment. Under these conditions, the RMSE of
the full 17 contact set, 0.77, is only slightly larger
than that of the non-contact cases (0.68 kcal/mol).

Using loop prediction to generate an improved
initial guess for additive mutations

Experience in using FEP for predicting small-
molecule binding affinities has shown that the initial
guess for the structure can have a significant impact
on the final results. The natural initial guess used in the
present case is the wild-type homology model, and
that is what we have done in the default protocol. In
most cases, this starting point yields reasonable
results, suggesting that most mutations do not induce
substantial conformational changes in the structure
and that such changes are important and kinetically
accessible in the course of the FEP simulation
protocol.
One situation where one might imagine that the

initial guess would present difficulties is in the case
of additive mutations (i.e., the final residue is larger in
size than the initial one). The great majority of
mutations studied in this paper do not fall into this
category, for the simple reason that alanine is the
second smallest of the amino acids. When a larger
residue is mutated to alanine, the structure is able to
collapse around the space that is created when
given sufficient time (doing so for Trp mutations
understandably takes longer than for smaller resi-
dues). However, a Gly-to-Ala mutation could require
substantial rearrangements of the structure.
One way to address this problem is to use the

endpoint structure corresponding to the larger of the
two residues in the alchemical pair as the initial guess.
A structure of the Ala mutant can be generated using
the loop and side-chain prediction methods in the
PLOPprogram [39,40].Wehave used this approach to
generate predicted Ala structures for all of the cases
where the wild-type residue is a gly, and then, we run
FEPsimulations in which theAla structure is employed
as the initial guess. The results and comparison to the
default protocol and experiment for individual cases
can be found in the summary table (Table S5) in the
Supplementary Data. For all cases but one, the errors
were similar in magnitude (and consistent with the
overall RMSE of the data set) for both starting points,
suggesting that for these cases, the barriers to



Table 3. Information on glycan-contacting cases

Glycan score bNAb Chain Mutation Experiment 10 ns without
glycan fragment

10 ns with
glycan fragment

100 ns with
glycan fragment

9.96 VRC01 heavy Y100 1.42 0.69 1.03 0.7
10.29 VRC01 light Y91 2.01 1.26 1.67 1.02
11.76 VRC01 light Y28 0.97 −0.63 0.36 0.28
4.31 VRC01 light S30 −0.15 0.08 0.57 0.03
23.01 VRC03 heavy W47 1.48 3.96 3.92 0.23
19.69 VRC03 heavy F100D 1.07 4.48 4.1 1.63
27.69 VRC03 light F91 −0.87 1.84 0.26 0.38
69.35 VRC03 light F97 0.83 0.79 1.98 0.51
28.68 VRC-PG04 heavy W50 1.28 2.78 −0.71 −0.11
21.49 VRC-PG04 heavy W47 1.07 1.18 −0.35 0.86
20.28 VRC-PG04 heavy G100A −0.63 −0.17 0.14 −0.37
13.78 VRC-PG04 heavy Y98 0.47 1.37 −0.25 −0.02
4.69 VRC-PG04 heavy G100 −0.27 1.12 0.76 0.7
21.48 VRC-PG04 heavy G100C 0.19 0.07 −0.11 0.28
23 VRC-PG04 light Y30 1.13 −0.16 0.23 −0.05
26.13 VRC-PG04 light L91 0.97 −0.69 0.31 0.34
20.4 VRC-PG04 light G31 0.47 −0.14 −0.03 0.04
26.5 VRC-PG04 light F97 0.02 −0.02 0.74 0.17

RMSE 1.47 RMSE 1.27 RMSE 0.77

Use of the glycan-fragment containing model appears to require longer simulation times. The total RMSE for glycan-contacting cases is
reduced from 1.47 kcal/mol without the glycan fragment to 0.77 kcal/mol with the glycan fragment present and 100-ns runs. The reduction
in RMSE is much more modest (1.47 to 1.27 kcal/mol) using the glycan fragment-containing model with the default 10-ns simulation
length.
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interconversion in the FEP protocol are unproblematic.
However, for theGly 54 residue on the PG04 antibody,
a significant difference was observed, with the Ala
starting point yielding results that are much closer to
experiment.
Analysis of the Gly and Ala endpoint structures for

this case provides insight into the nature of the
problem. The PG04 antibody heavy chain contains
two neighboring arginines, residues R71 and R73,
whose interactions with gp120 can change under
mutations on the CDR H2 loop. In the wild-type
antibody, R71 forms an extremely stable salt bridge
with an aspartic acid (D201 in our homology model,
D368 in the 3SE9 crystal structure template used to
build the RSC3 homology model) on the gp120, and
R73 forms a stable contact with another residue on the
antibody heavy chain. This salt bridge was found to be
persistent in all other FEP trials of VRCPG-04
mutations and also across multiple independent MD
simulations, long MD simulations of the crystal
structure and homology model complex, and in
PLOP predictions of the wild type CDR H2 loop with
GLYat this position. In contrast, in theAla structure, the
R71 side chain is predicted to shift away from theD201
side chain, with R73 moved into contact with D201.
However, using the prediction for the mutant as the

starting configuration for the FEP/REST run, we
found that the mutant system stabilizes into a
configuration where R73 replaces R71 in the contact
with the gp120, approximately canceling the effect of
breaking the contact with R71 (see Fig. 5). The
barrier to the R73 crossing into this configuration is
sufficiently large that a 100-ns trial is not sufficient to
observe it, and it is doubtful that it will be accessible
to any tractable simulation length. The large number
of atoms involved in the barrier likely also makes it
inaccessible to inclusion in the REST region. These
results suggest that in prospective predictions going
forward that involve larger additive mutations,
applying the PLOP protocol to predict the conforma-
tion of the mutant state will be a useful adjunct in
achieving robust, accurate relative binding affinity
prediction. The net RMSE of the four CDR H2 loop
cases was reduced from 1.78 kcal/mol using the
default protocol to 0.89 kcal/mol. The remaining
glycine-to-alanine cases on the CDR H3 and CDR
L1 loops of VRCPG-04 mutations are identified as
moderate or strong glycan contacts. Loop predictions
for these cases were performed, with the glycan
fragment present and included in the final protocol,
and these are the values reported for the cases in
Table 3. The difference from the result using the
crystal structure loop was negligible in these cases.

Summary of suggested protocol improvements
for FEP calculations of the effect of mutation at a
protein–protein interface

From the results discussedabove,we canpropose a
protocol for running FEP calculations to predict the
effects of protein mutations on protein–protein binding
affinities. One study cannot completely define or
validate a general protocol; it will require investigation
of many more data sets to establish a prescription that
can be viewed as fully reliable at high level of accuracy.
Nevertheless, we have identified a number of key



Fig. 5. First and last frames of the (a to b) wild-type and (c to d) mutant phases for the VRC-PG04 G54 mutation using
the PLOP-predicted starting structure. (b) The wild-type phase regains the contact with the gp120 residue shown, which is
found for the crystal structure-based homology model and wild-type loop prediction. (c and d) The mutant phase system
maintains the contact between R73 and the gp120 residue because the contact involving R71 is now prevented by the
alanine side chain.
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problems specific to protein–protein FEP (as opposed
to small-molecule calculations) and developed solu-
tions,whichperformwell overall for the calculations run
to date.Wedoexpect that our protocol will proveuseful
in predicting antibody/gp120 interactions, based on the
size of the data set that we have considered, and the
quality of the results.
The modifications we propose for protein–protein

FEP calculations, as compared to protein–small-
molecule calculations, can be summarized as follows:

(1) In small-molecule FEP, the great majority of
calculations are reasonably well converged
with 10 nsec of simulation time. In contrast, a
subset of the cases above required simulation
times of 100 nsec. This is clearly the case for
tryptophan mutations and for residues in
contact with glycans. These systems appear
to require longer relaxation times, as is ob-
served in trajectories of both the bound complex
and (in at least one case) the antibody in
solution. All such cases in the present data set
have been run for 100 nsec, and the results are
qualitatively superior to the 10-nsec runs. In
future work, it may be the case that other types
ofmutations require longer running times; this is
likely to be manifested in the lack of conver-
gence at the 10-nsec simulation mark. Much
more extensive exploration will be required to
provide a complete, robust prescription as to
when extended running times are required.
One could simply run all calculations for
100 nsec (or longer); however, this necessi-
tates the use of considerable additional GPU
time. As GPU time becomes less expensive, it
may make sense to adopt routine longer
running times as a default protocol. At present,
our specific recommendation is to run trypto-
phan mutations and glycan-involved mutations
to 100 nsec and to carefully examine default
10-nsec runs for other calculations for signs of
poor convergence.

(2) We have shown that continuum solvent-
based loop and side-chain prediction can be
helpful in improving the convergence of the
FEP simulations when mutating a smaller



Table 4. Summary of results for the improved protocol

Without
glycan-

contacting
cases

Including
glycan-

contacting
cases

Data set RMSE Correlation RMSE Correlation

VRC01 0.55 0.79 0.64 0.72
VRC03 0.78 0.41 0.78 0.27
VRCPG-04 0.58 0.49 0.65 0.22
All three

antibodies
0.64 0.62 0.68 0.49

RMSE values are in kcal/mol.
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residue (in the present cases, this is always a
Gly residue) to a larger residue (in the present
paper, it is always an Ala). The specific,
recommended protocol is to carry out loop/
side-chain prediction when the larger residue
is the target residue and to use the predicted
structure as the initial guess in the FEP
simulations. In prospective design applica-
tions aimed at increasing potency, there will
be many changes other than Gly to Ala that
fall into this category; indeed, many, if not
most, favorable mutations are likely to be
additive. Comparing more extensive results of
this type with the experiment will provide
rigorous testing of this component of the
recommended protocol in future work.

Summary of results using recommended protocol

Figure 6 presents the combined data for all three
antibodies compared to the experiment. Table 4
summarizes separately the RMSE and correlation
results for all three bNAbs and for the full data set
with and without glycan contacts. VRC03 contained
the largest computed outliers as compared to the
experiment in the set, which may have been the
result of the particularly strong chain of contacts
between a glycan and the antibody light and heavy
chain. This may have had some effect on other
residues on the heavy chain not in a direct sequence
of contact. The RMSE of the experimental results
between re-measurements of the same system is
estimated to be around 0.45 kcal/mol for a typical
case (see the Supplementary Data Table S2 for
details). The overall uncertainty range in our
predictions with this protocol is comparable to the
experimental levels, as is confirmed by the analysis
of multiple independent FEP simulations, which
Fig. 6. Experimental versus FEP/REST relative binding
affinity values for alanine scan cases showing the combined
data set from VRC01 (circles), VRC03 (squares), and
VRC-PG04 (triangles). Correlation values with the largest
experimentalΔΔGvalue excluded are given in parentheses.
gives an error estimate (full width) of about
0.51 kcal/mol (see Supplementary Data Table S7
for details). With the random error in the computed
values and measurements both roughly 0.5 kcal/
mol, the overall RMSE due to both theory and
experiment would be expected to be around
0.7 kcal/mol, which is roughly what is found in the
data presented here. While individual cases likely
still exhibit systematic errors associated with the
sampling or protein force field, the magnitude of the
overall RMSE for the three data sets, 0.70 kcal/mol,
suggests that it will be increasingly difficult to dis-
tinguish experimental from computational error unless
the experimental error can be reduced.

Insights from FEP trajectories

Analysis of trajectories generated from the FEP/
REST alanine scan data can also be used to gain
insights into the underlying reasons for the observed
experimental and predicted changes in binding
affinity. Here, we focus on three notable cases:
W100B and G54 on VRC01, and F100D on VRC03.
These cases are, respectively, the most unfavorable
mutation experimentally, most favorable mutation
experimentally, and an example of a case where the
glycan affects a mutation indirectly through its direct
interaction with another antibody residue, F91, on
the light chain.
The first case, W100B, was the most unfavorable

mutation in the alanine scan cases. Its indole nitrogen
formed a highly stable hydrogen bond with a gp120
side chain (glu 204 in the RSC3 homologymodel) and
also formed very stable pi-stacking interactions with
two adjacent residues (Y100 and W47) that appear
important in stabilizing the overall binding mode of
VRC01 with gp120 (see the top panel of Fig. 7). The
latter effectively anchored the long flexible CDR H3
loop to the sheet thatW47 is on. In the bottom panel of
Fig. 7, several frames from the wild type and mutant
replicas are shown together, aligned to the backbone
of the first wild-type frame. With W100B present,
W100B (and Y100, not shown) is aligned well with the
light chain, constraining the CDR H3 loop configura-
tion. In the mutant end trajectory frames, in contrast,



Fig. 7. Top: Loss of the hydrogen bond of W100B
(center) with gp120 residue A141 (dashed yellow line) and
the stabilizing network of pi–pi stacking interactions
(dashed light blue lines) result in the large unfavorable
effect upon mutation to alanine. Bottom: Five frames from
the end of the wild-type end (green) and five frames from
the end of the mutant end trajectory (blue) with light chain
backbones aligned to the first wild-type frame are shown
with the H3 loops highlighted in yellow for the wild-type
frames and red for the blue frames.

Fig. 8. The mutation of G54 (top) to A54 on the heavy
chain results in an improved hydrophobic contact with I204
on the gp120, resulting in the favorable change in binding
affinity observed for this mutation.
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the much smaller alanine is essentially uncorrelated
with the alignment of the light chain backbone, and the
CDR H3 loop is able to assume a more favorable
backbone configuration, explaining at least a part of
the slow relaxation. The mutant trajectory frames also
show a noticeable shift in the overall alignment
between the heavy and light chains and the bNAb
and the gp120. In addition to explaining the high
unfavorability of theW100B to ALAmutation, this also
explains why W47, which appears to have no direct
contacts with the gp120, gave an unfavorable result
upon mutation to ALA. The very stable contact with
W100B also likely explains why Y100 on VRC01
showed little sensitivity to the presence of the glycan
fragment NAG776, despite being in direct contact with
it, as it could not shift into the space of the missing
glycan when no fragment was included, due to the
interaction with W100B. From the standpoint of future
binding affinity optimization efforts, W100B and the
residues contacting it are likely poor candidates for
modification, as there is a large cost to destabilizing
this network of interactions.
G54 on the heavy chain of VRC01 was the most
favorable mutation experimentally, and it can be
seen from the trajectories that this is likely because
the inserted alanine formed a favorable hydrophobic
interaction with an isoleucine (I204 in the RSC3
homology model) on the gp120, whereas the glycine
left a gap large enough for water to occupy (see Fig.
8). In the FEP simulations starting from the model
structure (with the re-predicted mutant CDR H2 loop,
as per the protocol outlined above), there were
initially no waters present in the region between G54
and I204. The degree of water penetration differed
with initial velocity seeds, resulting in variance
somewhat higher than average in the FEP results,
suggesting that future refinements to the protocol to
better place solvent initially may help attain better
convergence in certain cases.
The observedgeometry in the trajectory framesalso

suggests the possibility that some further optimization
of this hydrophobic contact might be possible by
substituting valine or leucine for G54 instead of
alanine. FEP/REST applied to mutations to valine
predicts ΔΔG of −1.90, as its greater size is better
able to fill the space between the CDR H2 loop and
I204 on the gp120. It does not appear that further
mutations to larger hydrophobic side chains will be
able to further improve this, as mutation to leucine



Fig. 10. Combined set of mutations for VRC01, VRC03,
andVRC-PG04 (filled circles)withFEP/RESTcomparedwith
the results of the empirical foldX program (open squares).
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already requires a reorientation of side chains to avoid
a clash. FEP/REST predicts that leucine performs
comparably by assuming a different orientation from
alanine and valine (ΔΔG = −1.79), but it is likely that
larger residues will degrade this by destabilizing the
nearby salt bridge between R71 on the bNAb heavy
chain and D201 on the gp120 model. Thus, analysis
of the alanine scan trajectories can potentially lead
to information useful for design of hydrophobic
optimizations.
Finally, we consider an illustrative case that is

sensitive to the presence of the glycan fragment and
that shows how the sequences of aromatic side
chains can propagate interactions with the glycan
fragments not in direct contact with the residue to be
mutated. F100D on the heavy chain of VRC03 formed
a strong hydrophobic contact with the nearby residue
F91 on the light chain; however, the presence of
NAG776 in the model disrupted this contact, pushing
away the F91 side chain far enough to allow water
penetration between the two phenyl side chains
(see Fig. 9). As a result of this, FEPwithout the glycan
fragment NAG776 predicted these mutations as
substantially more unfavorable than they are. Al-
though the lack of the full glycan structure may slightly
underestimate the unfavorability of the F91–glycan
interaction, the results of FEP on the system including
NAG776 are able to bring both to within 1 kcal/mol of
the experimental result.

Comparison with empirical method

For comparison, we show the results of FEP/REST
in comparison to foldX [31], a popular empirical
method of predicting alanine scan mutation values,
which takes a negligible amount of computing time
compared to the FEP/REST simulation time (less than
5 min per structure on a single processor versus ~12–
72 h on 4 GPU cards for FEP/REST simulations). As
foldX has no ability to treat the glycan fragment, we
Fig. 9. The hydrophobic contact between F100D and
F91 does not form with the glycan fragment NAG776
included, leading to the significantly less unfavorable results
consistent with experiment.
limit the comparison here to the 38 cases identified as
insignificantly glycan-contacting. The results of FEP/
REST over the full set showed a substantially lower
RMSE (0.64 versus 1.02 kcal/mol) and a substantially
better correlation (fit line r 2 of 0.62 versus 0.15) than
the results of foldX on the same set. The foldX RMSE
of 1.02 kcal/mol is only slightly lower than the null
hypothesis result of 1.14 kcal/mol obtained by taking
all the calculated results to be 0. This favorable
comparison holds up even with the removal of the
largest experimental ΔΔG value point from the set
(RMSE 0.64 versus 1.00 for foldX; r2 = 0.39 versus
r2 = 0.05 for foldX). Figure 10 shows the combined
data from the 44 cases using FEP/REST together with
the results from foldX for comparison. The foldX
correlation coefficient is sufficiently small as to render
the results of little utility in making actionable
predictions in prioritizing mutations. The RMSE of
foldX is respectable primarily because most of the
predictions are close to zero free energy change, as
are many of the experiments.
Discussion

The experimental data presented in this study
reveal that a subset of contact residues have greater
impact on binding affinity, suggesting that these
contacts account for the high binding affinity observed
between VRC01-like antibodies and HIV-1 gp120.
There are common locations across all three antibod-
ies, which result in ΔΔG values in excess of 1kal/mol
whenmutated to alanine, suchasW47,W50, andR71.
Another interesting result lies in the N terminus of all
three antibodies' light chains. Alanine mutation of
N-terminal contacting residues resulted in ΔΔG lower
than −0.5 kcal/mol, suggesting that optimization in the
area could improve antibody potency. Even though
there are a number of commonalities among the
three antibodies, their energy landscapes differ in a
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number of ways. VRC01 G54 mutant had a ΔΔG of
−1.2 kcal/mol; however, in VRC03, similar contactG55
mutant had aΔΔG of 0.8 kcal/mol. In another example,
in VRC-PG04, G100A had ΔΔG of −0.6 kcal/mol in
contrast to VRC01 N100A mutants with a ΔΔG of
1.1 kcal/mol.
The results here demonstrate that FEP/REST can

be successfully applied across a large number of
mutations in an antibody–antigen complex to give
meaningful predictions of relative binding affinity. To
our knowledge, this is the one of the first large-scale
applications of FEP to any antibody–antigen complex,
let alone one with the significant complications
encountered here. The difficulties associated with
homology modeling, glycosylation effects, relaxation
times, and loop-level sampling of additive mutations
appear to be effectively addressable with the current
vers ion o f the FEP/REST sof tware and
the computational resources available. The level of
accuracy presented here appears to be sufficient for
screening prospective mutations for effectiveness in
increasing binding affinity with a useful rate of
success, although this will need to be validated by
actual prospective calculations.
The current data set has provided a broad explora-

tion of the issues that complicate the application of
FEP/REST to protein complexes. While we have been
able to demonstrate that long simulation times are
required for some residue types and that even small
additive mutations can result in large structural
rearrangements necessitating the use of loop and
side-chain prediction, more test sets are needed to
generalize and refine these protocols.
There remain some outstanding sampling issues

for a small handful of cases in the set. In particular, in
one case on the H2 loop of VRC-PG04, T53 shows
much more sensitivity to small changes in initial
conditions than most of the other cases. This case is
adjacent to the G54 case discussed in detail
previously, and the difficulties may be of similar
origin. An additional issue is that the case cited
above is experimentally determined to result in a
more favorable binding affinity, despite the reduction
in the size of the residue from threonine to alanine. In
general, one would expect that most such cases
must arise because of favorable, relatively complex
rearrangements in the surrounding residues at the
interface, and capturing such rearrangements is a
larger sampling problem than capturing effects more
localized around the target residue. From our current
results, longer simulation times on the order of
100 nsec appear unable to resolve these cases.
More extensive conformational sampling might be
able to address such cases with a higher degree of
effectiveness. It is also possible, however, that
experimental noise is a significant contributor to the
disagreement between theory and experiment.
Hence, a more intensive investigation of all aspects
of these cases is called for in future works.
As noted previously, mutations in which the net
charge of the system is changed present significant-
ly greater difficulties for FEP simulations due to
periodic boundary condition artifacts, as has been
investigated by Parameswaran et al. and Rocklin
et al. [27,28], Lin and coworkers [41], and Reif and
Oostenbrink [42]. These authors have suggested a
posteriori corrections using Poisson–Boltzmann
(PB) electrostatics to ameliorate these problems, a
technique that appears to be promising. However,
there are other issues, when the net charge of the
system is changed by a mutation, which are not
addressed by PB corrections, for example, the
possibility of large structural rearrangements and the
potential for changes in pKa between wild-type and
mutant systems. We are in the midst investigating the
methodologies for correcting for boundary condition
artifacts using PB corrections in conjunction with other
strategies such as running the simulations with the
experimental concentration of explicit ions and simul-
taneous creation/annihilation of counterions to keep
the system neutral during the course of FEP simula-
tions. The problems due to large-scale rearrange-
ments and the changes of protonation state upon
mutation pose fundamental issues in improving the
sampling of the simulations to address major changes
in loop conformations and the use of techniques such
as constant pH simulation to handle protonation state
changes. Finally, the accuracy of the potential energy
function in cases where there is a change in charge
needs to be calibrated; however, this can only be
attempted when the key sampling issues have been
addressed. A solution to these challenges is essential
if FEP is to be used effectively in facilitating antibody
design and optimization, as the change of a charged
residue to a neutral or oppositely charged residue (or
change of a neutral residue to a charged residue) will
often be a useful modification.
Models and Methods

Experimental alanine scans

We mutated each contact of VRC01, VRC03, and
VRC-PG04 to alanine, expressed the altered Fab
antibody fragment, measured their affinities for HIV-1
gp120 using an Octet biosensor, and calculated
the changes of Gibbs free energy (ΔG). Alteration of
VRC01 glycine 54 to alanine enhanced affinities in
some cases, suggesting that a hydrophobic residue at
this positionmight lead to enhanced antibody potency.
Characterizations of the interacting energy landscape
between VRC01-like antibodies and HIV-1 gp120 thus
provide a rational basis for germline origin and suggest
ways to enhance potency.
VRC01, VRC03, and VRC-PG04 alanine mutants

were generated by substituting individual antibody
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amino acids at the Ab-gp120 interface to alanine.
Only contacting amino acids with buried surface
area greater than 5 Å2 were chosen for the alteration
(contacting residues defined in Zhou et al. [11]).
HIV-1 gp120 core protein RSC3 was used for all
binding experiments [10]. RSC3 protein and anti-
bodies were produced in 293 FreeStyle cells and
purified with a protein A immobilized 17b antibody
affinity column and a protein A column, respectively.
A fortéBio Octet Red384 instrument was used to

measure the binding kinetics of wild-type and alanine
mutant antibodies to gp120. All assays were per-
formed with agitation set to 1000 rpm in Kinetics
Buffer (ForteBio). The final volume for all solution was
50 μl/well. Assays were performed at 30 °C in tilted
black 384-well plates (Geiger Bio-One). Anti-Human
Fc sensor tips (ForteBio) were used to capture Fabs
for 300 s. Biosensor tips were then equilibrated for
90 s in Kinetics Buffer prior to measuring the
association with RSC3 proteins in solution for 300 s.
Sensor tips were then allowed to dissociate for 300 s.
Parallel correction to subtract the systematic baseline
drift was carried out by subtracting the measurements
recorded for a loaded sensor incubated in Kinetics
Buffer. Data analysis and curve fitting were carried out
using Octet software, version 8.0. Experimental data
were fitted with the binding equations describing a 1:1
interaction. Global and local analyses of the data sets
assuming reversible binding (full dissociation) were
carried out using nonlinear least-squares fitting,
allowing a single set of binding parameters to be
obtained simultaneously for all of the concentrations
used in each experiment.
Binding free energy for each alanine mutant was

calculated using the formula ΔG = RTln(KD), where R
is the ideal gas constant,T is the absolute temperature,
and KD is the dissociation constant (Koff/Kon). The
change in the binding free energy between the alanine
mutant and respective wild-type antibody (ΔΔG) was
calculated by subtracting ΔGwt from ΔGmutant with
positive ΔΔG signifying the decrease in affinity of the
antibody to gp120 as a result of alanine substitution.
Values for all mutations performed as part of this set
are reported in Table S1.

Homology model building methods for gp120/
RSC3 complexes

For each of the three wild-type complexes, a model
for the complex with the RSC3 gp120 was built using
an available crystal structure (PDB structure 3NGB for
VRC01, PDB structure 3SE8 for VRC03, and PDB
structure 3SE9 for VRC-PG04). The sequence align-
ment between RSC3 and the gp120 strain in the
template crystal structure was optimized using Clus-
talW [43], yielding a sequence identity of 50%, a
sequence similarity of 63%, and gaps of 11%. The
models were built using a knowledge-based approach
(described in more detail in Ref. [44], where it was
applied to the prediction of loops in homology models
of antibodies), whereby insertions and deletions in the
sequence alignment, and any missing backbone
coordinates from the template itself, were reconstruct-
ed using a library of loop fragments of similar length
from other known PDB structures. These candidate
loop fragments were then filtered according to their
stem geometry to discard those that cannot form
reasonable connections with the existing model, and
the surviving fragments were then positioned in the
model by superposition of the attachment residues.
Loops, which clash with the protein, or with each other,
were discarded, and the surviving loops were then
ranked by sequence similarity using BLOSSUM62
[45], with the highest sequence similarity loop being
chosen.
The side-chain conformations of residues, which

were conserved in the sequence alignment, were
retained, while the conformations of all other side
chains (including all residues involved in the loop
building described above) were iteratively sampled
using a coarse library of rotamers derived from
known PDB structures until no clashes remained
[44]. The coordinates of all atoms not derived directly
from the template itself were then minimized,
producing the final model. The antibodies were not
present in the RSC3 model-building process; how-
ever, differences in the binding interface between the
template structure taken from complexes with the
three different antibodies are retained in the three
different RSC3 models.
The antibody from the crystal structure was then

aligned with this homology model. First, the homol-
ogy model of the gp120 protein was aligned with the
gp120 protein from the crystal structure bound to the
antibody in such a way that the crystal structure
antibody is moved by the same displacement and
rotation. The antibody from the crystal structure was
then merged with the homology model of the RSC3
gp120 sequence, using the relative orientation
generated by aligning the gp120 proteins. Several
rounds of side-chain optimization on the RSC3
gp120 protein in complex with the antibody were
then performed using the Prime program [46,47].
The regions of the antibody chains that are distant
from the binding region were truncated to reduce the
system size, and the resulting structure was pre-
pared for MD simulations by adding hydrogens
corresponding to physiological pH. The resulting
set encompasses the mutations of 20 residues from
VRC01, 11 from VRC03, and 15 from VRC-PG04,
from their wild-type identity to alanine, across the
three antibodies considered.
The net difference between the common parts of

the gp120 protein in the crystal structure from the
gp120 homology model is quite small; the heavy
atom RMSDs for the common parts of the template
and RSC3 sequence are 0.66 Å for VRC01 (0.38 Å
for only backbone atoms), 0.37 Å for VRC03 (0.38 Å
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for only backbone atoms), and 0.45 Å for VRC-PG04
(0.40 Å for backbone atoms). No residues whose
backbones had to be predicted because of insertions
or deletions from the template structure are within 5
Å of any residue on the antibody, and only a single
residue backbone insertion point is within 10 Å of the
antibody. The backbone structure in the interface
region is nearly identical to the template, save for
one loop in the template that does not occur in the
RSC3 model. A figure comparing the homology
model and the 3NGB crystal structure is available in
the Supplementary Data (Fig. S1).
Each antibody-homology model complex was fur-

ther validated with a 100-ns MD simulation to verify
that the binding properties with the antibody using
the homology model were stable under thermal con-
ditions. Comparing simulations using the template
crystal structures shows that the identified binding
regions show comparable stabilization in both crystal
structures and homology models, with backbone
RMSDs from the input structure in both stabilizing
below 2.0 Å. Details may be found in the Supplemen-
tary Data (Fig. S3). We conclude from this that the
homology model provides a reasonable description of
the binding interface.
Given the close homology in theCD4-binding region

between the gp120 variant used in the experiments
and in the crystal structures of 3NGB, 3SE8, and
3SE9, it is a plausible hypothesis that the glycans in
the experimental system occupy similar positions in
the experimental gp120/antibody complex as in the
crystal structures. As noted previously, only one of the
glycan fragments, NAG776, is close enough to any of
the sites of mutation to induce a large direct effect on
the change in binding free energy upon mutation.
Figure 11 shows the glycan fragment NAG776 in

the 3NGB structure, which is in clear contact with the
antibody-binding region. Based on the hypothesis
Fig. 11. The glycan fragment on gp120 residue N276
captured in the 3NGB crystal structure, N776, is shown with
the three cases identified as suspected glycan contacts
(Y104, Y91, and Y104).
that the effects of NAG776 can be largely captured
by including the part that has been observed in the
crystal structures, we performed FEP/REST on the
17 cases identified as potential direct or indirect
glycan contacts from the crystal structure. Short MD
simulations were performed to determine likely
glycan contacts. Direct contact score was defined
by a simple interatomic contact count, scaled with a
sigmoidal cutoff around 4 Å, and averaged over
simulation frames. Indirect contacts were defined by
scoring contacts of aromatic side-chain residues
(tryptophan, tyrosine, and phenylalanine) with direct
contacts and aromatic side-chain contacts of direct
contacts and with a higher contact score threshold.
Details of the scoring parameters used are provided
in the Supplementary Data. While in some cases, the
fragment included may not capture the full set of
interactions with the glycan, especially for residues
on the light chain away from the heavy light chain
interface, for many cases, the inclusion of the
Nag776 fragment gives predictions in significant
agreement with the experimental results.

FEP MD simulations

Default small molecular protocol (10-nsec runs)

All simulations were performed using the Des-
mond MD program [48–50]. Input structures are
solvated with a 5-Å buffer of simple point charge
(spc) water in a rectangular box. For each case, a
short relaxation phase, with a combination of
minimization and restrained MD phases, was per-
formed to equilibrate the system. Each equilibrated
structure was then input into a 10-ns FEP/REST
simulation to calculate the change in Gibbs free
energy, ΔG, with the difference between the bound
and unbound simulations giving the relative binding
affinity (ΔΔG). This protocol uses 12 lambda
windows in the FEP/REST schedule run for 10 ns
with the side chain of the residue being mutated
included in the REST hot region. The FEP/REST
phase was performed in the Isothermal-isobaric
ensemble with a Berendsen thermostat and baro-
stat. The equations of motion were integrated using
a reversible reference system propagator algorithm
(RESPA) scheme with an inner time step of 2.0 fs
and an outer time step of 6.0 fs.
Modified simulation protocols

For TRP cases, and cases where the glycan
fragment is included in the model gp120–bNAb
complex, simulation times for the FEP/REST phase
of the simulation are extended from 10 ns to 100 ns.
For glycine-to-alanine mutations, the antibody loop
containing the glycine residue is re-predicted, along
with surrounding side-chain conformations and with
the alanine replacing the glycine. This structure with



945FEP of Relative Binding Free Energy
the re-predicted loop on the antibody is then used as
the input for the full simulation protocol, with the
same equilibration cycle and 10-ns (100 ns for
glycan contacts) FEP/REST simulation cycle. For
glycan contacts, the loop prediction is performed
with the glycan fragment present in the structure. All
cases with the glycan fragment present use 100-ns
FEP/RESTphases. In addition, for any remaining 10-ns
simulations, which show greater than 0.5 kcal/mol
differences between the two independent trials of
one simulation leg, three additional independent
trials seeded with different, randomly generated
initial velocities are performed and included in the
average.
Conclusions

We have shown here a proof of concept that FEP/
REST can be used to predict the relative binding
affinities of a large set of alanine scan data. Several
protocol refinements and modeling improvements
have been put forward, which reduce the overall
error in the data set to a level that is comparable to
the estimated experimental uncertainty. As noted
above, the present protocol is incomplete in that we
have not yet demonstrated the ability to treat
mutations, in which the net charge on the protein is
changed. The use of PB calculations to correct for
periodic boundary condition effects, combined with
the inclusion of appropriate ionic strength, is a
promising approach to this problem and can readily
be tested using the data sets discussed here. Work
along these lines is currently in progress.
While there is reason to be optimistic that the

protocols described here could be profitably applied
to predict the effects of mutation for a wide range of
protein–protein interactions, new problems may arise
for different systems. Hence, application of the present
methodology across a diverse set of protein–protein
complexes is essential for assessment of broad
applicability. We plan to report the results for such
data sets in subsequent publications.
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