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Why to fit models to DNA

• improve annotation quality

• understanding of evolutionary processes leading to  DNA diversion

about DNA:

•DNA has the form of four states (A,C,G,T nucleotides or
base pairs) positioned in space

• can be “read” in specific direction for coding parts

• low order Markov models are used, e.g. for predicting the
occurrence of certain sequences as CTGAC etc
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As known from (Avery and Henderson 1999),

• DNA can often be modelled by Markov chain
• Analysis in the context of log linear models

Peculiar features:

•The data produce contingency tables with the similar margins 
(dependence of the observations).

•However, the analysis is the same as for multinomial samples.

•Standard number of degrees of freedom is correct
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recall: Markov chain model

Def: A sequence of random variables is called a 
Markov chain of the order k, if each state in the 
chain depends only on its k previous 
neighbours

For DNA
• 1st order Markov chain models two-residue dependence. 

• A 0th order Markov chain models the distribution of 
independent residues.
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How to estimate the Markov model
for a given stretch of DNA

approximate the parameters by multi-nucleotide 
frequencies:

for  1st order Markov model:

• Initial distribution: via the occurrences
of each particular residue, e.g.

pa=Na/L
• Transitional probability matrix via the 

number of occurrences of  the each 
adjacent pair, N ij.
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Dependencies within DNA

Definition: Independent state model, M0 -the state in 
a particular position is independent of the previous state

Two-way table is formed by counting 16 pairs:      

S
A        C         G         T

A      Naa       Nac       Nag       Nat
F  C      Nca       Ncc       Ncg       Nct

G      Nga       Ngc       Ngg       Ngt
T      Nga       Ngc       Ngg       Ngt

Notation: Nij =occurrence of (i,j) pair 
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Example: kni-cis regulatory region, Drosophila melanogaster

S
A      C     G      T      total

A  140    62    58    75      335
C    54    53    67    69     243

F                   G    69    71    80    61     281
T     72    56    77  189     394

total                   335  242  282   394  1253
(Bishop et al. 1975) calculate expectations
by using the marginal totals, assuming independence:

Eij=Xi.X.j/X..,
Xi.=number of times i occurs in the position First,
X.j=number of times j occurs in the position Second,
X..=number of all pairs
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•Then we compute:
the Pearson chi-square statistics X2 and/or
minus twice the likelihood ratio statistics G2 :
Both follow asymptotic chi-square with df=9

•Compare against a chi-square distribution 

•If the null hypothesis of independence is correct,
we have a distribution with 9 degrees of freedom

Both statistics here are more than 100.2…

Hypothesis of independence should be rejected

Typical for DNA!



9

Alternative formulation (Avery, Henderson1999) is as 
a generalised linear model with a log-link, Poisson 
error structure and linear predictor:

jiij SFEij ++== µη )log(

is the overall mean, Fi refers to the first position,
Sj-to the second of the pair (i,j)

µ

We fit the model for kni_cis data with R:
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Null deviance: 194.79  on 15  degrees of freedom
Residual deviance: 112.03  on  9  degrees of freedom

D=G2 here, similarly used: again, the null is rejected!

We might

•Assess if first order Markov model, M1 describes the data
•Analyse a three-way table for triplets (i,j,k)

Fitting first order Markov model, M1
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Table 2 : The triplet counts for kni-cis regulatory region, D.

A     C     G      T
A     65    19    12    16
C     23      9    19    11                                 A
G     27    15    18      6
T     25    11     20    39

A    24    14    19    11
C      8    11    15    12                                 C
G    14    17    19    10
T     16    11    18    23

A    24    18    13    19
C      8    13    26    16                                  G
G    14    19    17    16
T    12    17    24     26

A    27    11    13    29
C    15    20     7     30                                   T
G    14    20    26    29
T    19    17    15   101
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• extension of independence model: a model with linear predictor:

jkijkjiijk STFSTSF +++++= µη

No dependence between First and Third positions;
Df=4(4-1)2=36, we need 64 observations,
And 48 parameters to estimate

Fitting first order Markov model
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Fitting higher order Markov model

m2: df=144 (256 observations and 112 parameters)
m3:           (1024 observations and 448 parameters)

Avery, Henderson 1999claim that M1 fits the most non-coding DNA 
they tried. 

We did not find it for regulatory regions

The expected values are given by

Eijk=Xji.X.jk/X.j. 

using notation similar to the two-way case.
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Power of the test for Markov model

• order of the Markov model increases                  ability of the test to 
discriminate between different models decreases

• order of the Markov model increases                sample size (length 
L) is more important: lack of the data

e.g. for fitting M2 (four-way table with 256 elements) with the 
power 80% we need at least 1250 bp long sequence!

• for M2, most cells have expected values less than 6 for a 
sequence of around 1500 bp, thus we will not have asymptotic chi-
square with df=144 

• merging sequences is not good: we loose biological sense 

That is why we suggest the following model:
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Special type of log linear models to fit DNA.

alternative type of log linear models, 
for short DNA functional regions

Our personal motivation: to use the models for 

1. Distinguishing DNA functional types, specially interested 
in regulatory DNA

2. Search for regulatory motifs
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RNA transcript

Gene

Header

transcription

translation

Protein

• Genes: code for proteins   
(exons )

•Gene header regulates 
transcription rate

About gene regulation
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Gene

Regulation of transcription

RNA tr

RNA transcriptheader

other 
header

Transcription factors : 

Other gene

Translation,

Far-away headers
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Biological Observations about 
Regulatory elements (TFBS)

Suggests certain statistical properties which might  be 
captured with appropriate models

• Likely to be Over - and Under-Represented

• Short (5-15 bp) sub-sequences

• Often arranged and closely packed in Cis-Regulatory Modules
(CRM) within   regulatory regions
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Data sets
Drosophila melanogaster

1
Regulatory
Regions,
60 experimentally
Verified 
Sequences,
600-2500 bp each

2.
Internal exons,
Randomly picked,
60 sequences
of similar to 1
lengths

3.
Non coding
Presumably 
non regulatory
DNA,
Randomly picked,
60 sequences
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Fitting Markov models

Limitations:
1.  length of sequence analysed

e.g. required 1250 bp to fit second order 
MC, while average human exon length is 
146 bp…

2. requirement of stationary distribution
DNA is very non-stationary
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Faster method, requires less information

Assume (for each individual sequence):

1. most nucleotides occur independently

2. overall independence is disrupted by 
certain words:    

• cores of TFBS (regulatory regions)
• stop-codons (exons)
• simple repeats (‘junk’ DNA)

Length of ‘disruptive’ words is responsible for
the “memory” of the model, k
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Instead of fitting higher order model, we first 
study standardised residuals

• The significant standardized residuals (>2) for 
independence model were:

Pearson          pair                            

5.8495    tt

5.3292    aa

-3.2483    ta 

-2.9560    at           

-2.9106    gt  

-2.3037    tc

2.2708    gc  

2.1073    gg

-2.0033    ag
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Assume  all pairs are independent 
except of aa and tt (see Pearson residuals)

),( jihjiij GSF +++= µη
Where Gh(i,j) ={1 if i=j=a or t; 0 else}

Now we have 
Residual deviance:   8.9785  on  8  
degrees of freedom

The model ‘independence except’describes the data 
well! 

Biological explanation: there are a lot of TFBS “TT” and 
‘AA’ rich words (TFBS: bicoid, huncnback,kruppel etc)
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Fitting three-way independent-except model

•The length of the most repetitive or rare patterns may be 
more than two base pairs.

•Compute three-way table, assuming  that all nucleotides 
are independent except of some triples. 

•Requires much less DNA information than conventional     
M1, M2 models.

•k=2 for this ‘3-way M0 except’ model
•k+1 is the length of most disruptive patterns
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Fitting multi-way independent-except model

•We successively compute four-, five- etc way 
tables if three-way Independent models do not fit 
our data.

•k=3,4.. for these models
•k+1 is the length of most disruptive patterns
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• Coding regions: best fit is k = 0 or 1 
Disruptive is  (-ta)

• Regulatory Regions: best fit is k=2 or 3 
Disruptive are 3-4 short motifs ( aaa, ttt,cgg )

• Non coding non regulatory regions: k > 0,1 
Disruptive are( If k > 1) only one or two short motifs
(almost any 16 pair motifs)

Results: given k and ‘disruptive’ patterns, 
we may separate between functional DNA

P.S. -ta is
everywhere…



27

• Presently we fit each sequence separately 
to determine the “best” fitting model for 
that sequence

• However sequences of the same DNA 
functional type are expected to be more 
similar to each other than sequences of 
different types

• Therefore can we identify what is common 
amongst sequences of the same type?

• Also can we discriminate between the 
different types? 
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