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Abstract 
 
Background: 
In characterizing the technical variation in gene expression measurements, one important 
aspect is comparison with expression differences of potential interest in a biological 
study.  Design of an experiment to investigate this aspect involves choice of samples that 
are to represent the biological variability. 
 
Results: 
In the experiment described here, replicate measurements of gene expression in a group 
of similarly treated animals provide data for comparison of technical and biological 
variation.  We consider twelve Affymetrix RAE230 2.0 microarray measurements on 
each of six genetically diverse rats (Rattus norvegicus) that were subject to the same 
control-group treatment.  The twelve measurements encompass RNA from the liver, from 
the kidney, and from two mixtures of both RNAs.  Our analysis of these measurements 
illustrates how one might perform the technical-biological comparison.  Under the 
circumstances of this experiment, the technical variation generally seems small enough to 
allow the biological variation to be appreciated.  However, the sets of twelve 
measurements are so much alike that the question of whether the biological variation is 
greater than the technical variation depends on one’s perspective.  From the perspective 
of a single-gene, the comparison can go either way.  As shown by our data analysis, the 
technical variation has various aspects including an array that gave results that had to be 
discarded, some instances of probe saturation, and batch effects related to choice of 
scanner and fluidics machine.  We conclude that, as implemented, the measurement 
technique would generally be adequate for differentiating animals such as these.  
However, there is no reason to believe that technical variation can be safely ignored in 
designing experiments with similar animals. 
 
Conclusions: 
Although the question of whether a gene expression measurement system is adequate for 
a particular purpose is complicated by the high-dimensional nature of microarray 
measurements, experiments can be performed that provide an answer that is broadly 
useful if not comprehensive.   



Background 
 
Efforts to improve gene expression measurements and the accompanying data analysis 
methods occupy many researchers [1, 2].  Many efforts involve development of data 
analysis methods for achieving specific goals in biological research.  Others, such as the 
one reported in this paper, are directed toward methods for overcoming technical 
variation in gene expression measurements.  In general terms, one can speak of biological 
and technical as a dichotomy in the sources that cause variation in a collection of 
expression measurements.  Biological sources cause variation in mRNA being measured.  
The effects of technical sources, the technical variation, are observed when the mRNA 
does not change from measurement to measurement.  Thus, technical variation and 
reproducibility convey the same idea, although reproducibility may also carry an 
implication of a performance metric. 
 
Among efforts to overcome technical variation, many are studies in which two or more 
alternative processing methods are compared in terms of their relative performance [3, 4].  
A familiar example is comparison of normalization methods [5].  Beyond studies of 
alternative processing methods are general studies of technical variation [6-8].  An 
important goal of such studies is identification of sources of technical variation so that 
decisions can be made about the need for reductions of these sources.  General 
characterization of the technical variation is the purpose of this paper. 
 
In 2004, David Rocke [9] wrote in reference to gene expression measurement, “Most of 
the variation in any biological experiment or clinical trial is biological.  Usually, the 
largest differences are between organisms, though there are cases in which such factors as 
diurnal variation can make the within-organism variability larger than the between-
organism variability.”  Statements like this may be responsible for the commonly held 
attitude that the technical variation in gene expression measurements is a secondary 
consideration.  For example, the MAQC consortium [10] adopted the paper title, “The 
MicroArray Quality Control (MAQC) project shows inter- and intraplatform 
reproducibility of gene expression measurements.”  However, this consortium analyzed 
measurements from a design with no challenging biological variation and thus with no 
realistic biological context.  
 
This paper demonstrates how technical variation can be put in the context of 
experimentally meaningful biological variation.  In the experiment discussed here, 
replicate measurements were made on RNA from six rats that differed genetically but 
were subjected to similar experimental treatment as part of the control group of a 
previous study.  For each rat, RNA was extracted from the liver and the kidney [11].  The 
liver RNA sample, the kidney RNA sample as well as two mixtures of the liver and 
kidney RNA samples were measured in triplicate [12].  This experimental design can be 
thought of as a six-fold biological replication of the design used in the first phase of the 
MAQC project [10].  The measurements were made with the Affymetrix RAE230 2.0 
microarray.  If this measurement system is capable of distinguishing these rats, then this 
experiment establishes its suitability for many related biological studies. 
 



The iconic issue in metrology is the suitability of a measurement system for an intended 
purpose.  In the case of gene expression measurement, the suitability issue is more 
complicated than in the case univariate measurements.  In the univariate case, the sizes of 
differences among the objects of interest can be compared to the measurement 
uncertainty thereby resolving the suitability issue [13].  In the case of univariate 
measurements, it is moreover true that researchers have in their minds an idea of the 
uncertainty of familiar measurements.  This paradigm applies one gene at a time to gene 
expression measurements but does not apply generally because researchers in gene 
expression generally cannot conceptualize with any confidence the collection of gene 
expression differences that they might find meaningful in an experiment.  There are, of 
course, statistical summaries of collections of gene expression differences, but these may 
not be useful to someone thinking about the biological goals of an experiment [14].  
Thus, the suitability issue is more complicated in the case of high dimensional 
measurements. 
 
Microarray users are, of course, familiar with the occurrence of defective results from a 
particular array, but the needed characterization of technical variation extends beyond the 
identification of defective results [15].  The idea of monitoring a gene expression 
measurement system is familiar if not often implemented.  The value in such monitoring 
involves characterization of the system variability.  What an appropriate characterization 
might look like can be garnered from the data analysis results presented in this paper.  At 
each monitoring time, one might measure liver mRNA, kidney mRNA, and the two 
mixtures all in triplicate as was done for each animal in the experiment described here.  
Of course, there may be alternatives to this set of 12 microarray measurements.  We do 
not present a prescription for gene expression monitoring but ideas on what such a 
prescription might be. 
 
There is one more aspect to the design of an experiment the purpose of which is 
comparison of biological variability with technical variation.  We have decided to 
associate biological variability with rat-to-rat differences in the mRNA levels found in 
their livers and kidneys.  To what do we associate technical variation?  There is, of 
course, always the repeatability, but this may be small compared to some batch effects.  
A familiar type of batch effect is inter-laboratory difference, which was studied in the 
first phase of the MAQC project [10].  To proceed with the comparison, we must specify 
batch effects that we want to manifest themselves in the measurement replication [16, 
17].  In the experiment discussed here, we do not include inter-laboratory differences but 
do include the effects of changing scanner and changing fluidics machine.  Moreover, we 
consider the effects of location on a 96-well plate. 
 
Results and discussion 
 
Drawing general conclusions from the data analysis results in this paper requires some 
familiarity with particulars of the experiment and the data analysis methods employed.  
We begin this section with two crucial aspects of the experiment, the materials measured 
and the normalization applied to the microarray intensities. 
 



Materials 
The RNA measured was extracted from animals with the following characteristics: 
 
Animal  Rattus norvegicus     
Strain Sprague Dawley Crl:CD(SD)    
Age 7-8 Weeks     
Sex  Male      
Body weight range 150 to 300 g     
Treatment  20% propylene glycol/80% lactic acid containing 4.3% mannitol, pH 4.0 
Administration Intravenous     
Duration Once per week for 13 weeks    

 
 
For each animal, the materials measured consisted of RNA extracted from the liver 
(designated material A), RNA extracted from the kidney (designated material D), and two 
mixtures of the two RNAs (designated materials B and C).  Because only part of the 
RNA is measured, namely, the mRNA, the mixtures are properly described by the liver 
mRNA as a fraction of the total mRNA in the mixture [18].  Moreover, because the 
concentration of mRNA in the total RNA differs between the liver and the kidney, the 
mRNA fractions differ from the total RNA fractions on which the actual mixing was 
based.  Material B was formed by mixing 0.75 liver RNA with 0.25 kidney RNA.  Let the 
concentration of mRNA in the animal j  liver RNA be denoted .  Similarly, let the 
concentration of mRNA in the animal 

Ajc
j  kidney RNA be denoted .  The mRNA liver 

fraction for material B is 
Djc

 

 
AjDj cc /25.075.0

75.0
+

. 

 
Material C was formed by mixing 0.25 liver RNA with 0.75 kidney RNA.  The mRNA 
liver fraction for material C is 
 

 
AjDj cc /75.025.0

25.0
+

. 

 
For each animal, we estimated  as a step in the normalization. AjDj cc /
 
For each animal, each material was measured three times with Affymetrix Rat230_2 
microarrays.  Thus, the data set considered here consists of 72 gene expression 
measurements.  A goal of this paper is summarization of these measurements. 
 
The three replicates provide an opportunity to look for discrepant results.  For each set of 
three replicates, we extracted the intensities for the perfect match probes and plotted these 
one versus the other.  The results for animal 3, material B are shown in Figure 1.  We see 
that the results for the third replicate are discrepant.  We exclude the third replicate from 



the remainder of our data analysis.  We offer a two part summary of the 72 
measurements:  the conclusion that something went wrong with the third replicate on 
material B of animal 3 and the analysis of the other 71 measurements that follows. 
 
Normalization 
The need for normalization of scanner intensities is so firmly established that a 
comparison of biological variability and technical variation in un-normalized intensities 
would be of no interest.  Normalization, however, reduces both types of variation.  For 
this reason, discussion of the normalization applied must precede discussion of the 
technical-biological comparison. 
 
We note first that our analysis is of the intensities from the perfect match probes.  We 
ignore the intensities from the mismatch probes.  Although the mismatch probes may be 
useful in some contexts, the perfect match probes alone provide a reasonable basis for 
comparing the two types of variation [19]. 
 
Our normalization method consists of two steps.  The first step is a version of the familiar 
global normalization, which consists of scaling of the intensities separately for each array 
[20].  For each array, the scaling is chosen so that the logarithms of the intensities center 
at the same value.  The second step is separate adjustment of the normalization of the 
twelve arrays for each animal so that the relations implied by the RNA mixing can be 
used as a basis for our analysis. 
 
Several methods have been proposed for normalizing the intensities from Affymetrix 
arrays.  We base our choice of method on the particular structure of the samples, their 
preparation by mixing.  As discussed by Bolstad [20], the normalization methods that are 
usually considered for Affymetrix arrays distort the relations among the intensities when 
the measurements are of substantially different mRNA samples.  Our normalization 
method is intended to avoid distortion of the array-to-array intensity relations that the 
RNA mixing used in sample preparation imply [21, 22].  Thus, our normalization method 
allows us to make use these intensity relations in our analysis. 
 
For a particular animal, the samples measured are related by the mixing.  The second 
normalization step is based on a model of this relationship.  For animal j  and probe p  
of gene g , let the model intensity for the liver sample be Ajgpθ  and for the kidney sample 

Djgpθ .  Letting  index the 12 arrays, we have as the mixing model for the scaled intensity i
 
 DjgpDjiAjgpAji xx θθ + , 
 
where 
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and 
 
  AjiDji xx −= 1 .
 
The unknown parameters in this model are Ajgpθ , Djgpθ , and the ratio  AjDj cc / .
 
The second normalization step consists of adjusting the scaled intensities  by 
forming 

jigpy

 

 
ji

jijigpy
η

η0−
. 

 
Note that the values of ji0η  and jiη  are the same for every probe and gene.  The second 
normalization step includes two parameters ji0η  and jiη  instead of just one as would be 
the case for scale normalization.  For each animal, the values of ji0η  and jiη  are chosen 
to make the adjusted scaled intensities fit the mixture model as closely as possible.  We 
denote the chosen values by ji0η̂  and jiη̂ . 
 
Estimation of the unknown parameters in the mixture model is part of the second 
normalization step.  The estimates of Ajgpθ  and Djgpθ  are denoted by  and .  
From the estimates of the ratios , we obtain estimates of  and , which we 
denote by  and .  A fitted value for the intensity of each probe is given by 

Ajgpθ̂ Djgpθ̂

AjcDjc / Ajix Djix

Ajix̂ Djix̂
 
 . DjgpDjiAjgpAji xx θθ ˆˆˆˆ +
 
The estimates of the ratios  are  AjDj cc /
 

Animal mRNA ratio AjDj cc /  
1 1.33 
2 1.23 



3 1.40 
4 1.80 
5 0.99 
6 1.16 

 
The second normalization step leads to normalized intensities that are more in line with 
the mixture model.  How well our normalization method performs is, of course, a 
legitimate question.  In part, the results in this paper provide an answer.  We apply our 
normalization method to each animal individually.  As detailed below, each animal gives 
similar results.  If our normalization method were unstable, results for different animals 
would not be similar.  Thus, it seems that our normalization method performs reasonably.  
 
Overview of the gene summaries 
Typically, in the analysis of data from Affymetrix arrays, the probe intensities for each 
gene are summarized to give a single value.  The general reason for this, which applies 
here as well, is that biological variation occurs at the gene level.  Probe-to-probe variation 
for a single gene is purely technical variation.  Thus, for the purpose of comparing 
technical and biological variation, a gene-level analysis seems, at least, to be a good place 
to start. 
 
In the analysis presented here, we use weighted least squares to summarize the probe 
intensities for each gene [22].  We obtain the weights from the fitted probe intensities that 
are part of second step of the normalization. 
 
The basis of our data analysis is more than the gene summaries, which we denote .  
From the fitted values for the probe intensities, we obtain fitted values for the gene 
summaries.  In addition, we also obtain a regression weight for each gene, which allows 
us to use weighted least squares for modeling the gene summaries. 

jigu

 
A key observation in the experimental results is similarity of the gene expression in the 
different animals.  Figures 2 and 3 present this observation for the liver and the kidney, 
respectively.  For each animal, the base 2 logarithms of the fitted gene expression levels 
are plotted versus the levels for the other animals.  We see that there is a strong relation 
between the levels for the different animals.  The correlation is not perfect, and one can 
wonder why.  Figures 2 and 3 do not offer evidence that the levels for the different 
animals could be better matched with a different approach to normalization. 
 
Some data analysis purposes require selection of genes with appreciable expression.  To 
select such genes, we average the fitted liver intensities and the fitted kidney intensities 
over the animals.  Figures 2 and 3 suggest that such averages represent in some sense all 
the animals.  We denote the liver average by Agθ  and the kidney average by Dgθ .  For 

some purposes, we select genes for which either 1>Agθ  or 1>Dgθ .  There are 9804 such 
genes.  This number can be compared to the total number, which is 31099.  We note that 
the number of genes for which 1>Agθ  is 7283, and the number of genes for which 



1>Dgθ  is 8392.  These latter two counts serve to locate the cutoff value in the overall 
range of expression levels.   
 
Biological-Technical model 
Probe summarization provides 18 measurements on liver samples, 3 for each animal.  For 
each gene, we might naively think of these measurements in terms of a one-way analysis 
of variance with 6 categories each corresponding to an animal and 3 replicates for each 
category.  This thinking is naïve because the replicates cannot be modeled as simply as a 
one-way analysis of variance assumes.  As shown below, there are batch effects in the 
technical variation that show up as lack of statistical independence among the replicates.  
Nevertheless, it seems worthwhile to look at the ratio of the estimated animal variance to 
the estimated replicate variance for each gene. 
 
Figure 4 shows a histogram of the variance ratio for the genes that satisfy 1>Agθ .  We 
note that this histogram shows negative values that result from estimation error in the 
estimation of the animal variances.  The animal variance is greater than the replicate 
variance if the true ratio is greater than 1.  The estimation error clouds the picture 
somewhat, but it seems clear that the ratio is greater than 1 for a substantial number of 
genes. 
 
Figure 5 shows a histogram of the animal to replicate variance ratio for the analogous 
kidney data.  The genes chosen are those that satisfy 1>Dgθ .  Our conclusion from this 
figure parallels that from Figure 4. 
 
Various factors are associated with the technical variation that perturbs the gene 
expression measurements considered here.  The levels of some of these factors are 
recorded in the data description.  Such factors include the scanner used, the fluidics 
machine used, and the location of the specimen on the 96-well plate.  There may, of 
course, be other factors that affect the technical variation.  Thus, the size of the technical 
variation observed in this experiment may not be as large as, for example, the size that 
would be observed in an experiment involving several different laboratories.  In fact, 
experience has shown that inter-laboratory variation is very likely to be larger than 
within-laboratory variation. 
 
A model that includes both the animal-to-animal variation and the factors that affect the 
technical variation is what we need to compare the biological variability and the technical 
variation carefully.  The model is of the gene summaries of the normalized probe 
intensities, which we denote by .  For each gene, there are 71 such values, 12 
measurements on each of six animals with one value missing, the third replicate on 
animal 3, material B.  The model includes a term for the animal effect, a term for the 
scanner effect, a term for the fluidics machine effect, and a term for the random error. 

jigu

 
Cleary, how the technical variation manifests itself for a particular gene depends on the 
expression levels in the liver and kidney.  We consider the case in which these two 
expression levels are different.  In this case, the most noticeable manifestation of the 



technical variation is in the difference between the two levels.  In other words, the 
technical variation manifests itself as variation in the slope of the calibration curve that 
relates the mRNA species with the observed intensity. 
 
We fit a model with similar terms to each gene in a set chosen to include genes that have 
appreciable difference in liver and kidney expression levels.  From all 31099 genes, we 
obtain the set of genes considered by first eliminating the genes for which 1≤Agθ  and 

1≤Dgθ .  Second, we eliminate the genes for which ( ) 1)(logabs 2 ≤DgAg θθ .  Note that 
the genes remaining after the second step show a two-fold difference between the liver 
intensity and the kidney intensity.  Third, we eliminate the genes judged to show 
saturation for any one of the six animals.  The details of judging saturation are discussed 
in the section on data analysis methods. 
 
In specifying the model, we make use of the liver average by Agθ  and the kidney average 

by Dgθ .  For each array, these averages lead to a predicted intensity given by 
 
 DgDjiAgAji xx θθ ˆˆ + . 
 
Note the dependence on j  due to the variation in the mRNA concentration ratio from 
animal to animal, which at this point in our analysis we consider known.  Think of a 
deviation that consists of a change in the slope of the calibration curve.  Under such a 
deviation, the model intensity would change to 
 
 ( )DgDjiAgAji xx θθβ ˆˆ + . 
 
We portray the animal-to-animal and technical variation largely in these terms.  For the 
animal-to-animal variation, we also include a deviation in the intercept of the calibration 
curve 
 
 α θ Ag /2 + θ Dg /2( ). 
 
 
In the model, the animal effect term is given by 
 
 ( ) ( )DgDjiAgAjijDgAgj xx θθβθθα ˆˆ2/2/ +++ , 
 
where jα  and jβ  are the coefficients to be fitted.  This parameterization of the animal 
effect makes the comparison of genes easier.  If there were no animal effect, then the 
coefficient jβ  would equal 1 and the coefficient jα  would equal 0. 
 
We parameterize the term for the scanner effect similarly.  We let this term be 
 



 ( )DgDjiAgAjii xx θθγ ˆˆ + . 
 
The coefficients iγ  depend on the array and not the animal because of the way the 
experiment was designed.  Two different scanners were used in the experiment.  The 
design has an imbalance of little consequence because of the missing value. 
 
We adopt a linear mixed model for the gene summaries [23].  We take the animal effect 
and the scanner effect to be fixed effects and parameterize them as above.  We take the 
fluidics machine effect to be a random effect.  We take its contribution to the model to be 
given by 
 
 ( )DgDjiAgAji xx θθς ˆˆ + , 
 
where ς  is a random variable.  There is a different realization of ς  for each of the 12 
fluidics machines. 
 
For each gene, we have as our gene summaries model 
 

( ) ( ) ( ) jiDgDjiAgAjiDgDjiAgAjiijDgAgjjig xxxxu εθθςθθγβθθα +++++++= ˆˆˆˆ)(2/2/  
 
In our notation for the unknowns of this model, we have suppressed the dependence on 
the gene.  For a particular i , iγ  takes on one of two values, the one for the particular 
scanner.  The error term jiε  has variance inversely proportional to the regression weight 
obtained as part of the probe summarization. 
 
The fitting for a particular gene gives a value for each β j , a total of 6 values.  Although 
there are other possibilities, we portray the animal-to-animal variation with the standard 
deviation of these 6 values.  We summarize over the 2213 genes in our chosen set by 
means of a histogram. 
 
For each gene, the fitting gives a value of iγ for one scanner and the negative of that 
value for the other scanner.  We portray the scanner variation in terms of one of these 
scanner values.  Again, we summarize over the 2213 genes by means of a histogram. 
 
Figure 6 shows the scanner histogram and the animal histogram.  This figure shows that 
under the circumstances of the experiment, the scanner variation is small relative to the 
animal variation.  The data do provide evidence that the absolute value of iγ  is greater 
than 0 for a substantial number of genes.  Thus, saying that the scanner variation can be 
ignored is perhaps going too far. 
 
For each gene, the fitting gives the standard deviation of ς , which we use to portray the 
fluidics machine variation.  Figure 7 shows the histogram of these standard deviations 
and the animal histogram. This figure shows that under the circumstances of the 



experiment, the fluidics machine variation is small relative to the animal variation.  The 
data do provide evidence that the standard deviation of ς  is greater than 0 for a 
substantial number of genes.  As with the scanner variation, saying that the fluidics 
machine variation can be ignored is perhaps going too far. 
 
Finally, we ask about the random variation.  This requires some adjustment so that the 
standard deviation of jiε  can be compared to the animal-to-animal ( β j ) standard 
deviation.  The top histogram in Figure 8 is obtained from the standard deviation of jiε  

divided by DgDjix θˆAgAjix θˆ + .  Both the numerator and the denominator vary with the 
array.  For this reason, we average over the arrays to obtain the top histogram in Figure 8.  
The bottom is the animal histogram.  Again we see that the animal variation is larger. 
 
It is worth noting that were there a class of genes of particular interest, then figures 
analogous the Figure 6 to 8 could be generated for this class.  These figures would 
contain histograms involving only the genes in the class of interest. 
 
 Whether we have properly chosen the terms for our gene summaries model is an issue.  
First, for the factors we have included, we have assumed a particular form for the effects 
as they vary with mixture.  Second, there are other factors that we might include such as 
location on the 96-well plate, instances of measurements repeated on the basis of 
laboratory inspection, and chip lot.  Examination of residuals is the standard approach to 
this issue. 
 
In the case of high dimensional measurements, examination of residuals differs from 
examination in the case of univariate measurements.  We fit our gene summaries model 
2213 times, once for each of 2213 genes.  Each gene gives a 71 dimensional vector of 
residuals.  One might guess that any deficiency in our gene summaries model would 
affect the residuals for many of the genes.  Thus, combining the residuals for different 
genes provides a powerful approach to looking at the fit of our gene summaries model. 
 
One way to obtain this power is to inspect a few components of the singular value 
decomposition of weighted residuals.  Let the residuals given by the difference between 
the gene summaries and the fitted model be denoted by .  We weight these by 
multiplying by the square root of the regression weight used in fitting the linear mixed 
model, 

jigr

jigw~ .  This gives a 71 by 2213 matrix with elements jigjig wr ~  to which we apply 
the singular value decomposition.  Thinking of the singular value decomposition in terms 
of principal components analysis, we observe that the first component explains 27% of 
the variance.  The first three components explain 55%. 
 
The first component of the singular value decomposition is given by .  If we think 
of this as the contribution of a factor to the weighted residuals, then the first two terms in 
this expression give the pattern of variation across the arrays due to the factor and the 
third term gives the relative amount that the factor contributes to each gene.  Figure 9 
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shows the third term.  We plot the elements of  versus 1v )2/2/(log2 BgAg θθ + , which 
gives an idea of the expression amount for the particular gene.  We see that the elements 
of  are almost all positive and become more positive for more highly expressed genes.  
This property might help in looking for a factor to explain most of this component.  
Figure 10 shows the first two terms of the first component with the mixtures labeled.  The 
array-by-array pattern shown in Figure 10 offers few clues as to the factor that drives the 
first component.  A small clue is given by the four measurements that the laboratory 
substituted for defective measurements.  These are shown in red.  These values are all 
high but not so high as to explain most of the variation captured by the first component. 

1v

 
Our consideration of the residuals from the fitted gene summary model shown in Figures 
9 and 10 do not offer much in terms of factors missing in the modeling.  One could look 
at more than the first component in hopes that the result would be more informative.  One 
could also include more factors in the gene summary model and look at the 
corresponding residuals.  We have not pursued these ideas. 
 
Conclusions 
 
As illustrated in this paper, a broader investigation of technical variation is possible 
through test measurement of mRNA from a group of similarly treated animals and of 
mixtures of mRNA from different animal organs.  A group of animals broadens the 
investigation by providing animal-to-animal differences as a gauge of the technical 
variation.  Mixtures based on different organs broaden the investigation by allowing 
calibration properties of the measurement system to be checked.  In addition, the 
illustration presented in this paper shows that the normalization method for mixture 
models used here is effective.  
 
The experiment described here has the virtue of allowing investigation of technical 
variation in terms of differences among animals in a control group.  The use of animals in 
a control group as a measurement system test seems appropriate because a measurement 
system capable of detecting differences within such a group can generally be expected to 
be sufficient for detection of whatever differences there are between such a group and a 
treated group of animals.  By sufficient, we mean that another measurement system 
would not provide substantially better biological evidence.  Thus, the experiment 
described here can be thought of as a prototype of a pilot study that might be done before 
a larger study with specific biological objectives involving treated animals. 
 
This paper illustrates approaches to gauging the technical variation in terms of the animal 
variation, but does not identify a quantitative approach that is to be preferred.  In 
qualitative terms, the gene expression measurement system considered in this paper 
appears quite consistent in its response to the RNA samples from the six animals chosen.  
This appearance suggests both that the animal-to-animal differences in the mRNA are 
small and that the technical variation is, on the same basis, also small.  For each gene, we 
can be more definitive about the comparative size of the animal variability and the 
technical variation.  For many but not all genes, the animal variability is larger than the 
technical variation.  In interpreting an experiment like the one described here, one could 



focus on some gene class of particular interest and thus be more definitive in the 
comparison of animal variability and technical variation. 
 
In judging technical variation in an experiment yet to be performed, the use of standard 
normalization methods [20] might be anticipated.  In this situation, the question arises as 
to how results such as those presented here can be informative.  There does not seem to 
be an easy answer.  An approach might be based on comparison of the intensities 
obtained under standard normalization with the intensities obtained with the 
normalization method used here.  The comparison should reveal preprocessing problems 
inherent in the standard normalization methods. 
 
Measurement of mRNA from two different organs as well as mixtures of these two 
mRNAs adds possibilities to the investigation of the technical variation.  Some of the 
results presented in this paper are essentially single-organ results and others involve 
measurements on the mRNAs and their mixtures.  The animal-to-animal comparisons of 
expression profiles shown in Figures 2 and 3 as well as the comparison of the among-
animal variance with replicate-to-replicate variance shown in Figures 4 and 5 can be 
considered single-organ results.  On the other hand, the comparisons of biological 
variability with technical variation in Figure 6 to 8 are based on the mRNAs and their 
mixtures.  These comparisons largely involve genes that are more highly expressed in one 
organ than the other.  For such genes, one can check to see if the measurement system 
has a mean response that is linear in the concentration of the particular mRNA species.  
When this is true, one can characterize the technical variation in terms of variation of the 
intercept and slope of the calibration curve. 
 
In this paper, much of the data analysis is applied to the measurements on each animal 
individually.  That the results for the individual animals are as consistent as they are 
suggests that the data analysis methods we have chosen are reasonably stable.  Thus, this 
paper also illustrates the performance of our methods for normalization and gene 
summarization.  
 
Data analysis methods 
 
The gene expression measurements on which this paper is based reflect differences 
between expression in liver and kidney, animal-to-animal variability, and technical 
variation.  In performing the data analysis, the challenge is choice of an approach that 
separates the animal variability and the technical variation well enough that the two can 
be compared.  The approach we have chosen is based on the general idea that any 
deviation from the mixture model is due to technical variation. 
 
Our data analysis approach is made up of four parts, normalization of probe intensities, 
summarization of the probe intensities for each gene, identification of genes for which the 
mixture model does not fit because of saturation, and characterization of the animal and 
technical variation in the gene summaries.  All of these tasks involve the mixture model.  
Our normalization approach is based in part on preservation of the fit of the mixture 
model.  The same is true of our summarization approach.  Identification of genes that 



exhibit saturation allows us to omit such genes from our animal-technical comparison.  
Our characterization approach, which we have already discussed in detail, is based on a 
linear mixed model that includes the mixture model. 
 
As discussed previously, our normalization approach consists of two steps.  The scaled 
probe intensities  produced by the first step satisfy jigpy
 
 ( ) 0)(log2 =∑ ∑g p jigpy . 

 
This equation is equivalent to saying that the scaling consists of centering the logarithms 
of the probe intensities for each array at their mean.  This equation shows that the scaling 
depends on whether the material measured is liver mRNA, kidney mRNA, or some 
mixture of the two and that one cannot expect the mixture model to fit the scaled probe 
intensities.  We adjust for this lack of fit in the second step of our normalization. 
 
The second step is an iterative procedure that results in normalized probe intensities 
given by 
 

 
ji

jijigpy
η

η
ˆ

ˆ0−
 

 
and fitted probe intensities given by 
 
 . ˆ x Aji

ˆ θ Ajgp + ˆ x Dji
ˆ θ Djgp

 
Note the dependence or lack of dependence that is indicated by the subscripts attached to 
the parameters in these expressions.  The indices j  and i  indicate dependence on the 
array with j  indexing animal and  indexing mixtures and their replicates.  The indices i
g  and p  indicate dependence on the probe with g  indexing gene and p  indexing the 
probes for this gene.  We see that the arithmetic operation that constitutes our second 
normalization step is the same for every probe on an array.  We see that the fitted 
intensities for each animal can be obtained from the fitted intensities for the liver  

and the fitted intensities for the kidney . 
Ajgpθ̂

Djgpθ̂
 
An understanding of our second step stems from the relation between the normalized 
intensities and the fitted intensities that the iteration produces upon convergence.  
Consider first the normalization parameters ji0η̂  and jiη̂

ji

.  We choose these parameters so 
that the normalized intensities are as close to the fitted intensities as possible.  In 
mathematical terms, we want to choose values of 0η  and jiη  so that ( ) jijijigpy ηη0−  is 
as close to the fitted intensities as possible.  In other words, the normalization parameters 

ji0η̂  and jiη̂  are given by fitting ( )DjgpDjix̂Ajgpjiji x θηη ˆ
0 + Ajiθ̂ˆ +  to  for each array.  

The fitting is by weighted least squares with weights [24, 25] 
jigpy
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Consider second the fitted intensities for the liver and kidney,  and .  Whereas 
the normalization parameters are obtained array by array, these fitted intensities are 
obtained probe by probe for each animal.  The fitted intensities are given by fitting 

Ajgpθ̂ Djgpθ̂

DjgpDjiAjgpAji xx θθ ˆˆ +  to ( ) jijijigpy ηη ˆˆ0−  for each probe.  The fitting is by weighted least 
squares with the weights given above. 
 
Consider third the estimate of the ratio of mRNA concentrations ( )AjDj cc / .  This ratio is 

given by fitting  to DjgpDjiAjgpAji xx θθ ˆˆ + ( ) jijijigpy ηη ˆˆ0−  for each animal, where  and 
 are functions of the concentration ratio as discussed previously.  The fitting is by 

weighted non-linear least squares with the weights given above. 

Ajix

Djix

 
This description of the relation between the normalized intensities and the fitted 
intensities provides the basis for a computational algorithm [22].  Note that in each type 
of fitting, some of the initially unknown parameters are fit and others are held constant.  
Our iterative procedure for normalization involves these types of fitting applied one after 
the other in a repetitive sequence.  Eventually all the fitted parameters converge so that 
the above relations between the normalized intensities and the fitted intensities hold. 
 
The next part of our data analysis is summarization of the probe intensities for each gene.  
The Affymetrix array used in the experiment discussed here provides several (typically 
11) probes as sensors for the mRNA for each gene.  It would, of course, be feasible to 
investigate animal variability and technical variation on the probe intensity level.  
However, because biological variation occurs on the gene level, Affymetrix array 
processing typically includes summarization over the probes corresponding to each gene.  
For this reason, comparison of animal variability and technical variation is more 
meaningful in terms of the underlying biology if performed on the gene summary level. 
 
We perform probe summarization with weighted least squares [22].  The use of weighting 
is motivated by the fact that higher probe intensities are more variable than lower probe 
intensities.  This same fact motivates the use of the logarithm in other approaches to 
probe summarization.  Carroll and Ruppert [26] discuss weighting and transformation as 
alternatives.  For animal j , array i , and gene g , our probe summary is given by 
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where  is the weight for probe . w jgp p
 



We calculate the weights from the fitted probe intensities in a way analogous to 
calculation of weights for the least squares computations in our normalization approach.  
Think about the fitted probe intensities  as a two-way table indexed by 

 and 
ˆ x Aji

ˆ θ Ajgp + ˆ x Dji
ˆ θ Djgp

i p .  We average this table over i  so that the weights do not depend on .  With 
weights independent of , the summarization does not interfere with the fit of the mixture 
model.  We have 

i
i
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Probe summarization methods for Affymetrix arrays typically give just a gene index 
value analogous to u .  With our method, we can obtain something more.  From the 
fitted probe intensities, we can obtain fitted gene intensities 

jig
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Moreover, we can obtain weights for use in fitting models to the  u jig
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The third part of our data analysis involves identification of genes for which the mixture 
model does not fit because of saturation.  It is well known that for some probes, the 
relation between the response and the concentration of the mRNA species in the sample 
is not linear because of saturation [27].  The degree of saturation in array-wide terms can 
be adjusted through adjustment of the sample preparation protocol.  However, this 
protocol is usually not adjusted to the extent necessary to eliminate all saturation.  Thus, 
we can expect to identify some genes that exhibit saturation.  Treating such genes as a 
case separate from the remainder of the genes seems to be a reasonable option in the data 
analysis. 
 
For a particular animal  and a particular gene j g , there are 12 values of  (or 11 in the 
case of animal 3 as discussed in Section 2).  One or more aspects of the technical 
variation cause these 12 values to deviate from the mixture model.  One aspect is 
saturation, and another is random error.  We are going to test the null hypothesis that the 
random error is sufficient to explain the lack of fit of the mixture model.  From the outset, 
we must acknowledge that there is an ambiguity in our investigation of saturation 
because some aspects of the technical variation besides saturation may cause rejection of 

u jig



this null hypothesis.  For each of the 4 mixtures, there are 3 replicate measurements.  
Because lack of fit of the mixture model does not influence the differences among 
replicate measurements on the same mixture, these differences provide an estimate of the 
variance of the random error.  Our test consists of determining whether this estimate is 
sufficient to account for the lack of fit of the mixture model to the averages of the 
mixture replicates. 
 
Computation of the lack-of-fit test statistic involves familiar statistical ideas from linear 
regression.  For a particular animal  and a particular gene j g , two sums of squares must 
be computed.  One sum of squares can be obtained from the replicates as follows:  For 
each set of three replicates, we compute the standard deviation, which we denote by 
sA ,  sB ,  sC ,  sD .  Let the 4 distinct values of  be denoted by ww jig A , wB ,  wC ,  wD .  
Except for animal 3, which has only 11 values, this sum of squares is given by 
 
 . 2222

1 2  2  2  2 DDCCBBAA swswswswS +++=
 
The other sum of squares is a result of the fitting of the mixture model.  We have 
 
 . ( )∑ −−=

i DDjiAAjijigjig xxuwS
BA

2

,2 min θθ
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The test statistic is given by 
 
 ( ) )8/(2/)( 112 SSS − . 
 
Under the null hypothesis, this statistic is F distributed with 2 and 8 degrees of freedom.  
Thus, a p value can be obtained for each animal and gene.  The formulas for animal 3 
differ in some details.   
 
This lack-of-fit F test does not tell us all that we would like to know about the character 
of the lack of fit such as whether the problem is saturation.  For a particular gene, 
consider the case in which the liver expression level is greater than the kidney expression 
level.  In this case, saturation shows up in the liver level with the fitted value based on the 
linear model greater than the observed value.  We can assess this by forming the 
standardized residual for the liver level [22].  In a similar fashion, we can treat the case in 
which the kidney level is greater than the liver level by forming the standardized residual 
for the kidney level. 
 
We combine the lack-of-fit F test and the appropriate standardized residual in Figures 11 
to 16.  Each of these figures has two plots, one for genes with the liver level greater and 
one for gene with the kidney level greater.  For each gene, the p value of the lack-of-fit F 
test is plotted versus the appropriate standardized residual.  Small p values show lack of 
fit, and standardized residuals with substantial negative values show saturation.  We see 
that most genes with significant lack of fit have standardized residuals that suggest 
saturation.  There are, however, some genes with significant lack of fit that do not have 
associated evidence of saturation.  These genes are puzzling, but perhaps there are so few 



of them that individual attention is not worthwhile.  We note that the results of Zheng, et 
al. [28] seem consonant with Figures 11-16. 
 
Each figure in the sequence reflects results for a different animal.  That the figures are so 
much alike seems remarkable.  Interestingly, the genes that show saturation have 
considerable overlap from animal to animal.  Consider genes for which the lack-of-fit p 
value is less than 0.01 and the standardized residual is less that -2.  There are 368 genes 
for which this is true for at least one animal.  Of these, 225 genes exhibit no overlap, that 
is, they qualify on the basis of only one animal.  Another 59 genes qualify on the basis of 
all six animals.  The other results are 
 
Number of 
animals 

6 5 4 3 2 1 

Number of 
genes 

59 13 20 21 30 225 

 
The total number of genes considered in forming this table is 9804.  Thus, one might 
conclude that many of the genes that appear with no overlap are included in the table only 
because of noise. 
 
Characterization of the animal and technical variation in the gene summaries involves 
fitting a linear mixed model as described previously. The linear mixed model for the 
normalized intensities  is given there in a standard form that permits fitting with 
available software [23]. 

jigu

 
Generally, Figures 2, 3, and 11 through 16 show that the animal-to-animal differences in 
the gene expression measurements are small.  Of course, choice of a way to quantify this 
notion is difficult because the data are high dimensional.  As what is perhaps a secondary 
aspect, this experiment provides a test of the normalization method.  Recall that the 
second step of the normalization method was applied to each animal individually.  
Apparently, one can say that the normalization method did not make the results for the 
different animals seem different.  Thus, the normalization method appears to be 
reasonably stable. 
 
Disclaimer: 
Certain commercial equipment, instruments, or materials are identified in this paper to 
foster understanding.  Such identification does not imply recommendation or 
endorsement by the National Institute of Standards and Technology, nor does it imply 
that the materials or equipment identified are necessarily the best available for the 
purpose. 
 



 

 
Figure 1.  Replicates for animal 3, material B.  Intensities of perfect-match probes plotted 
one replicate versus another. 



 

 
Figure 2.  Fitted gene summary values for the liver material from each animal.  Log base 
2 intensities plotted one animal versus another. 



 

 
Figure 3.  Fitted gene summary values for the kidney material from each animal.  Log 
base 2 intensities plotted one animal versus another. 
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Figure 4.  For the liver materials, histogram of the ratio of the animal-to animal variance 
to the replicate-to-replicate variance.  The ratio is truncated at 20. 
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Figure 5.  For the kidney materials, the ratio of the animal-to animal variance to the 
replicate-to-replicate variance.  The ratio is truncated at 20. 
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Figure 6.  Variation in terms of the fractional change in calibration curve slope.  
Difference between scanners versus animal-to-animal standard deviation.  Animal 
standard deviation truncated at 1. 



 

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0

Fluidics Machine Variation

G
en

e 
C

ou
nt

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

Animal Variation

G
en

e 
C

ou
nt

 
Figure 7.  Variation in terms of the fractional change in calibration curve slope.  Fluidic 
machine standard deviation versus animal-to-animal standard deviation.  Animal standard 
deviation truncated at 1. 
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Figure 8.  Variation in terms of the fractional change in calibration curve slope.  Average 
standard error for the animal fitted values versus animal-to-animal standard deviation.  
Animal standard deviation truncated at 1. 
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Figure 9.  Gene-to-gene variation in the contribution of the first principal component. 
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Figure 10.  Array-to-array contribution of the first principal component with the mixture 
labeled.  The red points correspond to measurements that were repeated when the original 
measurements were judged defective. 
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Figure 11.  For animal 1, gene-by-gene characterization of the fit to the linear mixture 
model.  Lack-of-fit p value versus the standardized residual.  Indication of saturation 
shown by the genes in red. 
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Figure 12.  For animal 2, gene-by-gene characterization of the fit to the linear mixture 
model.  Lack-of-fit p value versus the standardized residual.  Indication of saturation 
shown by the genes in red. 
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Figure 13.  For animal 3, gene-by-gene characterization of the fit to the linear mixture 
model.  Lack-of-fit p value versus the standardized residual.  Indication of saturation 
shown by the genes in red. 
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Figure 14.  For animal 4, gene-by-gene characterization of the fit to the linear mixture 
model.  Lack-of-fit p value versus the standardized residual.  Indication of saturation 
shown by the genes in red. 
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Figure 15.  For animal 5, gene-by-gene characterization of the fit to the linear mixture 
model.  Lack-of-fit p value versus the standardized residual.  Indication of saturation 
shown by the genes in red. 
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Figure 16.  For animal 6, gene-by-gene characterization of the fit to the linear mixture 
model.  Lack-of-fit p value versus the standardized residual.  Indication of saturation 
shown by the genes in red. 
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