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Working Philosophy
• Systems biology aims at providing quantitative

models from biological data sources. This is thus
mainly an empirical discipline.

• Information gain is data driven. This suggests the
main task is inverse modelling or “inference”, i.e.
finding suitable model classes and parameters.

• A key problem in inference is the concept of
“noise”, which is caused by
• measurement noise

• intentional or accidental simplifications(like ignoring certain influence factors)

• and last but not least byerroneous reports that contribute to background knowledge.

− > no certain background information
− > no point estimates as this implies certainty
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Adequate models
Capture underlying structure and avoidoverfitting.
Fiddle parameters affecting model complexity can
have adverse effects.

too simplistic

too complex 
adequate

Idea: overfitting is a result of tuning

the model towards the training data.

Over or under-complex models that

do not capture the underlying data

generating mechanism will perform

worse on novel data obtained from

the generating model than an appro-

priate model.

Getting the model class right is thus imperative for
success!
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A Simple Regression Model
Suppose a life science experiment provided some
noisy dataZ = {(x1, y1), ..., (xN , yN)} with xn

possibly multivariate i.e. vectors.

Based onZ, we have aninferenceproblem of finding
an “optimal” relation betweenx andy:

p(y|x) = f(x; θ) + ε(λ)
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A Simple Regression Model
Suppose a life science experiment provided some
noisy dataZ = {(x1, y1), ..., (xN , yN)} with xn

possibly multivariate i.e. vectors.

Based onZ, we have aninferenceproblem of finding
an “optimal” relation betweenx andy:

p(y|x) = f(x; θ) + ε(λ)

Noiserequires adeterministicand arandom
component.

− > Inherent uncertainty,y is a random variable!
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Assessing Model Parameters
Idea: subtract the deterministic part fromyn:

εn = yn − f(xn; θ)

For convenience introduceX = {x1, ..., xN} and
D = {y1, ..., yN}. Assuming thatεn are i.i.d samples,
we get thelikelihood function:

p(D|θ, λ,X ) =
∏

n

p(yn|θ, λ, xn)

which is a suitable objective function for comparing

various options forθ andλ.
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MLH’s Major Weakness
True model - linear regression, Gaussian noise:

p(y|x) = f(x; θ) + ε(λ)

f(x; θ) = [1, xT ]θ andε(λ) = N (ε; 0, λ), with λ
denoting “precision” (i. e. inverse variance).
Finite sample size and different model classes: What
is the maximum of the likelihood?

Think “phone book”: Perfect memorising of allyn,
modelling error0, λ− > ∞, p(D|θ, λ,X )− > ∞.

− > likelihood unsuitable objective for inferring model classes!
Note: An additional problem may arise from unidentified models, like y = abx, where even an

infinite amount of data is insufficient for uniquely defining model coefficients.
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Occam’s Razor
Human reasoning implicitly applies Occam’s Razor

William of Occam (or Ockham)
(1288 - 1348)

Entia non sunt multiplicanda sine neces-
sitate: Entities are not to be multiplied
without necessity.
Interpretation: One should always opt
for an explanation in terms of the fewest
possible number of causes, factors, or
variables.

Material fromhttp://en.wikipedia.org/wiki/William_of_Ockham.
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Guess the Correct “Model”
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Guess the Correct “Model”

Model comparison requires external penalty on top of
likelihood! (AIC, BIC, etc.)
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Probabilistic Approaches

Thomas Bayes (1701 - 1763)
Learning from data based on a
decision theoreticframework
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Probabilistic Approaches

Thomas Bayes (1701 - 1763)
Learning from data based on a
decision theoreticframework

p(I|D) = p(D|I)p(I)
p(D)

First consequence: we
must revise beliefs ac-
cording to Bayes theorem
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Probabilistic Approaches

Thomas Bayes (1701 - 1763)
Learning from data based on a
decision theoreticframework

p(I|D) = p(D|I)p(I)
p(D)

First consequence: we
must revise beliefs ac-
cording to Bayes theorem

αopt = argmaxα < u(α) > , where

< u(α) >=
∫

I
u(α, I)p(I|D)dI.

Second consequence: De-
cisions by maximising ex-
pected utilities

Integration replaces maximisation!
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Probabilistic Model
Probabilistic model, Bayesian Network or DAG
(M. I. Jordan, 1998):

A set of vertexesV = {X1, ..., XN} and a set of
directed edgesE define a graphM = {V, E} of
parent - child relations
pa[Xi] = {Xn|(Xn → Xi) ∈ E ∀n}.
Conditional probabilitystatements complete the
model:

P (V ) =
N
∏

n=1

P (Xn|pa[Xn])
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Example
Rules of probability calculus likeP (A,B) = P (A)P (B|A) or

P (A,B,C) = P (A,B)P (C|A,B) are simplified by

probabilistic independence statements.
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Example
Rules of probability calculus likeP (A,B) = P (A)P (B|A) or

P (A,B,C) = P (A,B)P (C|A,B) are simplified by

probabilistic independence statements.

A

E

D

CB

Instead of standard probability calculus where

P (A,B,C,D,E) = P (A)P (B|A)P (C|A,B)

P (D|A,B,C)P (E|A,B,C,D)

we get

P (A,B,C,D,E) = P (A)P (B|A)P (C|A)

P (D|B,C)P (E|D)

The latter requires much fewer parameters.
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Bayesian Modelling Applied

• Assumption: Several microarray experiments are
obtained such that slides can be mapped to a
biological state of interest.

• Shared genetic function: Interesting genes are
across experimentsinformative about these
biological states.

• Task: find those genes! Actually two problems:
• Cross annotation of genes (potentially

different species)
• Calculate a measure across experiments

This talk shows how we may obtain such a measure
using a probabilistic approach.
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Biological States of Experiments

Mammary Gland tc. (lact. day & hours of involution)
biol. state L0 L5 L10 I12 I24 I48 I72 I96

Type 1 Apoptosis - - - + + ? - -

Type 2 Apoptosis - - - - - ? + +

Apoptosis - - - + + + + +

Differentiation + + + ? - - - -

Inflammation ? - - + + ? - -

Remodelling -(?) - - - - ? + +

Acute Phase + - - - + + + +

Serum Deprived Apoptosis (duration in hours)
biol. state t0 t28 t48

Type 2 Apoptosis - + +

Apoptosis - + +

Differentiation + - -
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Potential Solutions

• Statistical meta analysis (originally proposed by
Fisher).

• “Bioinformatics” meta analysis.
• Probabilistic Inference.
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Toy Data
Means of Gaussians to generate synthetic data

Experiment Gene Group Mean Assay 1 Mean Assay 2

Ranking

1 ±2 ±2

2 ±0.5 ±0.5

3 ±0.05 ±0.05

Censoring

1 ±2 ±2

2 ±4 ±0.5

3 ±0.1 ±0.1

Data: 4 synthetic “genes” per group generated from
Gaussians with unit std. dev. and means as shown.
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Bioinformatics Meta Analysis
Simple Approach:

• Take an individual experiment
• Calculate some gene ranking (e.g. using fold

change, t-test, LIMMA, etc.)
• Decide upon some threshold
• Search for “genes” found in all lists.
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Meta Analysis - Ranking

Assay 1 Assay 2 Combined
gene 1,3 gene 1,1 gene 1,1
gene 1,1 gene 1,4 gene 1,2
gene 1,4 gene 1,2 gene 1,3
gene 1,2 gene 1,3 gene 1,4
gene 2,4

Rank information gets lost!
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Meta Analysis - Censoring

Assay 1 Assay 2 Combined
gene 2,3 gene 1,3 gene 1,1
gene 2,4 gene 1,2 gene 1,2
gene 2,1 gene 1,4 gene 1,3
gene 2,2 gene 1,1 gene 1,4
gene 1,2 gene 2,2 gene 2,2
gene 1,1
gene 1,3
gene 1,4

Genes from group 2 getcensored at random!
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Potential Solutions II

• Statistical meta analysis (originally proposed by
Fisher).

• “Bioinformatics” meta analysis− > sucks!
• Bayesian Inference.
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Probabilistic Gene Ranking
Apoptosis (lac. vs.
inv.!) in the Mouse
Mammary Gland

Apoptosis

G
ro

up
in

g 1

0

y
n

72 h I 96 h I48 h I24 h I12 h Id5 lac d10 lacd0 lac

Dpre Apoptosis

��
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Probabilistic Gene Ranking
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γ

1,t,n
x

observation n
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�

�
�

�
�

�

1,t,n

Λ1 β1,t π

Is

Latent variable probit GLM.

if It =

{

1 : s1,t,n ∼ 1 + xt,n

0 : s1,t,n ∼ 1

s1,t,n is a one dimensional
Gaussian random variable with
meanβT

t,1xt,n and precisionγ.
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Probabilistic Gene Ranking
Apoptosis (lac. vs.
inv.!) in the Mouse
Mammary Gland
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Latent variable probit GLM.

if It =

{

1 : s1,t,n ∼ 1 + xt,n

0 : s1,t,n ∼ 1

s1,t,n is a one dimensional
Gaussian random variable with
meanβT

t,1xt,n and precisionγ.

As an alternative to p-values,P (It|D1), serves as a probabilistic
rank measure. Gene selection according toP (It|D1) implies a
zero-one utility function and an M-closed model space.(VB-eqns.)
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Shared Gene Function
Include Information about Endothelial Cell Death
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� Model 0 hrs. vs.
28 hrs. as latent
variable probit
GLM. Calculate
P (D2|It), the mar-
ginal likelihood.

Bayes theorem gives aprincipled measure for ranking

P (It|D1,D2) =
P (It|D1)p(D2|It)

p(D2|D1)
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It’s simple and quick
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Ranking without Censoring

Evaluation of Ranking Evaluation of Censoring

gene nr. Q(It) gene nr. Q(It)

group 1

gene 1,4 0.999 gene 1,3 0.999

gene 1,1 0.999 gene 1,1 0.999

gene 1,3 0.999 gene 1,2 0.999

gene 1,2 0.999 gene 1,4 0.999

group 2

gene 2,3 0.554 gene 2,2 0.998

gene 2,4 0.499 gene 2,4 0.995

gene 2,2 0.400 gene 2,3 0.989

gene 2,1 0.194 gene 2,1 0.969

group 3

gene 3,4 0.049 gene 3,2 0.147

gene 3,2 0.040 gene 3,3 0.088

gene 3,3 0.039 gene 3,4 0.042

gene 3,1 0.034 gene 3,1 0.033
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However Rather Sensitive
The same data is used to calculate rank probabilities
in dependency ofΛ = λI.

P (I|D)

1/λ 100 10 3.2 1 0.79 0.5 0.4 0.32 0.25 0.2

P (I = 1|D) 0.1 0.35 0.44 0.3 0.26 0.21 0.19 0.19 0.2 0.2

P (I = 2|D) 0.29 0.22 0.15 0.22 0.26 0.34 0.36 0.37 0.36 0.35

P (I = 3|D) 0.6 0.4 0.34 0.33 0.31 0.28 0.26 0.25 0.24 0.24

P (I = 4|D) 0.008 0.031 0.066 0.15 0.16 0.18 0.18 0.19 0.2 0.21

and Rankings

1/λ 100 10 3.2 1 0.79 0.50 0.4 0.32 0.25 0.2

3 2 1 2 3 3 3 3 3 4

2 3 3 3 2 1 1 1 1 1

1 1 2 1 1 2 2 2 2 2

4 4 4 4 4 4 4 4 4 3

It should not be surprising that modifying regularisation has an
effect of modelling!
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Dilemma:
Bayes theorem, which actually allows us to calculate
what we want in the first place:

P (It|D1,D2) =
P (It|D1)p(D2|It)

p(D2|D1)

also requires for the aboveβ to specify a priorp(β|It)

and that guy introduces nasty side effects when
calculating the model probabilities.

What can we do?
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Improving on Previous Model
• Hyper parameters (πt, Λ1 andΛ2) influence probability measureP (It|D1,D2).

• Less critical forP (It = 1|πt) (e.g.0.5 for ignorance). However even a pragmatic

approach for adjustingΛ like mintp(β̂t|Λ) = 0.95 p(0|Λ) is not convincing. (Why

0.95 ?)
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approach for adjustingΛ like mintp(β̂t|Λ) = 0.95 p(0|Λ) is not convincing. (Why

0.95 ?)
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• all genes contribute to

inference ofΛs

• hierarchical priors for

sensitivity analysis

• Q(It) approximates

gene measure

• using one model gets

all marginals right
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Sensitivity Analysis
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For the hyper parameters this suggestsg ≤ 0.01 andh ≤ 1.

We also conclude that equal cost results in many potential

candidate genes.
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Top Ten
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Top 10P (It = 1|D1,D2) for Mammary

lactation vs. involutionand Endothelial cell

death.

Gene Symbol P (It|D)

SAT 0.99951

ODC1 0.99921

GRN 0.99921

BSCL2 0.99919

MLF2 0.99884

IFRD2 0.99867

BTG2 0.99843

CCNG2 0.99826

TNK2 0.99789

C9orf10 0.99783

Biological meaning of this list could provide an
important sanity check of the approach!
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Gene Ontology Assessment
Gene lists are difficult to assess for Biological meaning.

Compact summary by mapping to Gene ontology DAG:

• Reannotate the (always) inconsistent GO annotations.

• Use Fishers exact test to infer GO categories with a

significant enrichment of active over inactive genes

(FATIGO).

Result:

238 active GO categories, many related to metabolic processes.
Several active GO categories from the “cell death” subgraphare
in line with our biological hypothesis and an indirect benchmark
of the ranking.
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Summary

• A Bayesian approaches provide means for data
integration, parameter inference and selecting
appropriate model classes.

• Avoid non hierarchical models for combining
information - arbitrary gene measures can be
adjusted for using the “right” prior.

• Analysis results that go beyond gene lists allow
for a more efficient communication with
biologists and may provide indirect evidence for
gene lists.

• Supplemental information for our recent
Bioinformatics publication is available at
http://www.sykacek.net/research.html#mcabf
(also GPL MatLab code).jump 2 TOC Bayesian Shared Gene Function, Peter Sykacek, Boku 2007 – p.30/34
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Variational Bayes I
Mean field Ansatz plus Jensen’s inequality. For all pdfsQ(θ):

log

(
∫

θ

p(D|θ)p(θ)dθ

)

≥

∫

θ

(

log(p(D|θ)) + log(p(θ)) − log(Q(θ))
)

Q(θ)dθ

= log(p(D)) +

∫

θ

(

log(p(θ|D)) − log(Q(θ))
)

Q(θ)dθ

the last integral is a negative Kullback Leibler divergenceand

thus smaller or equal zero.

+ easy to compute; - systematic error as only an approximation.

back
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Variational Bayes II
Joint Distribution implied by the previous DAG

p(It,β1,t, S1,t, D1,t|Λ1, πt, γ,X1,t) = P (It|πt)p(β1,t|Λ1, It)

×
∏

n

(

p(s1,t,n|β1,t,x1,t,n, It, γ)P (y1,t,n|s1,t,n, It)
)

whereS1,t = {s1,t,1, ..., s1,t,N} andD1,t = {y1,t,1, ..., y1,t,N}.

• Approximate posterior by a mean field expansionQ(β1,t|It)

�

n
Q(s1,t,n|It).

• Write down negative free energy and maximise the functionaliteratively w.r.t. all

Q-distributions.

• The negative free energyFmax(Q) approximates the log marginal likelihood and thus

P (It|D1,t,Λ1, πt, γ, X1,t).

back
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