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The Need for Experimental Design

Why Experimental Design?

Large-scale genome-wide experiments:
Affordable today in fully automatized labs
Solve problems by complete enumeration or random shooting?

Guaranteed to run out of steam on hard problems
Cutting-edge experiments always hard/expensive
Even for large labs: (#Results)/$ counts!

Sequential Optimal Design
Plan next experiment based on all previous outcomes
⇒ Every smart biologist does that anyway!
Can optimal design be semi-automatized on a dumb machine?
What general framework allows us to do that?
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The Need for Experimental Design

Bayesian Optimal Design

Smart Biologist

Which variables could explain
my data? How could
dependencies look like?

Bayesian Framework

Model design
Observed, hidden variables.
Dependency model

X look well-determined.
Did not learn much about Y

Posterior uncertainty
Reduced on X, but not on Y

I think: Exp. A (B) would tell
me more about X (Y) now
⇒ Of course I do B!

Information Gain Scores
S(A; Data) < S(B; Data)
⇒ OK> Should do B

1000s of X, Y. Combinatorial
number of possible
interactions⇒ Human intuition

Run overnight, sift through raw
data, (hopefully) help intuition
along
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System Identification of Genetic Regulation

Gene Regulatory Networks

Genes can regulate other genes
Protein from gene A can be transcription factor:
up-/down-regulates transcription of gene B.
Causal link A→ B in gene regulatory network
Affordable Measurements
m-RNA concentrations (micro-arrays), protein concentrations
↔ Expression levels xA(t), xB(t)
System Identification
Interventionist. Disturb system (without breaking it).
Learn structure from changes in measurements
Optimal Experimental Design
For given model: Short(est) sequences of experiments leading to
identification?
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System Identification of Genetic Regulation

Linearized ODE Model

ODE Model

dx (t) = f (x (t))dt + dW (t)
E[x (t)]→ x0 (t →∞)

x (t) Expression levels n genes
f (·) Non-linear model
x0 Unperturbed steady state

1 Linearize around steady state: x (t)→ x (t)− x0.
System matrix A = (dfi/dx0,j)ij

2 Disturb system by u(t) ≡ u∗, measure new steady state:

dx (t) = Ax (t)− u(t) + dW (t), x∗ = lim
t→∞

E[x (t)]

3 Motivates linear model for measurements:

u∗ = Ax∗ + ε, ε ∼ N(0, σ2I)
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Sparse Bayesian Linear Model

Bayesian Linear Model

Likelihood P(D|A) =
∏

k N(uk |Axk , σ2I). Prior P(A)

Bayesian Posterior : P(A|D) ∝ P(D|A)P(A)

Why not just (penalized) maximum likelihood estimation:

Â = argmax P(D|A)P(A) ?

Estimation is not sufficient here
Optimal design fundamentally needs uncertainty quantification
⇒ Posterior P(A|D) is just that
Decisions are needed after many fewer than n experiments.
⇒ “Objective” classical estimation theory breaks down
Besides: Is A really completely unknown . . . ?
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Â = argmax P(D|A)P(A) ?

Estimation is not sufficient here
Optimal design fundamentally needs uncertainty quantification
⇒ Posterior P(A|D) is just that
Decisions are needed after many fewer than n experiments.
⇒ “Objective” classical estimation theory breaks down
Besides: Is A really completely unknown . . . ?

Florian Steinke, Matthias Seeger, Koji Tsuda (MPI BioKyb)Gene Network Identification PMCB Vienna, 26/7/07 7 / 18



Sparse Bayesian Linear Model

Bayesian Linear Model

Likelihood P(D|A) =
∏

k N(uk |Axk , σ2I). Prior P(A)

Bayesian Posterior : P(A|D) ∝ P(D|A)P(A)

Why not just (penalized) maximum likelihood estimation:
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Sparse Bayesian Linear Model

A Sparsity Prior Distribution

All biological regulatory networks are sparsely connected
⇒ A should have many very small entries
Encoding sparsity of A is a must!
⇒ Sparsity-enforcing prior distribution P(A)

Laplace Prior

P(A) =
∏

ij

P(aij), P(aij) =
τ

2
e−τ |aij |
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Sparse Bayesian Linear Model

Approximate Inference: Rough Idea

Bayesian posterior for one row a of A

P(a|D) ∝ P(D|a)
∏

i

P(ai)

Hard “just” because P(ai) are not Gaussian
Moment matching idea: P(D|a)P(ai) not Gaussian either.
Gaussian with same moments have form P(D|a)P̃(ai |bi , πi).

P(a|D) ≈ Q(a) ∝ P(D|a)
∏

i

P̃(ai |bi , πi)

Expectation Propagation: iterates moment matching over i :
Update variational parameters bi , πi s.t.:

Qold(a)P(ai)/P̃(ai)←→ Qnew (a) [same moments]
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Sparse Bayesian Linear Model

Bayesian Experimental Design

Information Gain Score

S(u∗, x∗|D) = D[Q′(A|D ∪ {(u∗, x∗)}) ‖Q(A|D)]

D[Q′ ‖Q]: Information gained in Q → Q′.
Efficient exact computation for Gaussians Q, Q′

But outcome x∗ unknown before experiment u∗ done!?
⇒ Use expected score under current knowledge Q(x∗|D, u∗).
Exact sampling: A ∼ Q(·|D), x∗ = A−1u∗
Score many candidates u∗ very efficiently:

Pick maximizer of EQ(x∗|D,u∗)[S(u∗, x∗|D)]
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Sparse Bayesian Linear Model

Our Approach As Black Box

Robust, efficient code will be released:
Predictable running time. Easy to use for non-experts
Free parameters σ2, τ :
Bayesian automatic selection, given related task data
Applies to time series data just as well (if linear model does)
Encompasses generalized linear models:

Non-Gaussian noise (outliers)
Discrete or point process observations
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Experiments

Experimental Setup

Common practice: validate on data from realistic simulation.

Sample small-world network,
n = 50 genes

fynq

lcdw

xjzd

ppqb

pqel

zwqn

kcdq

gvvy

prht

rora

iftl

rhqg

dxcq

gzyc

cqbw

whdu

oaxx

veoz

dkwt

ftom

oxrt

oddd

tutn

orxs

lmkw

utfh

bbxt

ynul

krwv

hcxu

wwpf

wdvt

tojr

olsj

epvh
bswi

vmbm

hvhn

qvas
yady

cvcm

dhoy

pctr

qwtw
lqao

acbo

suex

ippq

uskn

grjj

Model with Hill-type kinetics,
parameters randomly drawn
(similar to Kholodenko et.al.,
02)

fi (x ) = −Vdi
xi

di + xi

+ Vsi
Y

j∈Ai

1 + Aij

„
xj
κij

«nij

1 +

„
xj
κij

«nij

Y
j∈Ii

1

1 +

„
xj
κij

«nij

Pool of 200 u∗ (unit norm; 3 non-zeros, sparsity for biological
relevance) randomly drawn
Noise variance σ2 estimated from simpler random networks.
Prior precision τ set by heuristic
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Experiments

Decision and Evaluation

Network from joint posterior Q(A)?
Rank edges i ← j by Q({|aij | > 0.1})
ROC curve: false positive rate→ true positive rate.
iAUC: area under ROC curve, up to # FPs = # edges.
Random ranking has iAUC = 0.02
About 25% edges have value ≈ 0 in true A (at steady state), not
detectable by linearized model. Excluded from iAUC computation
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Experiments

Results
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Experiments

Comparison Tegnér et.al.

Tegnér et.al.(PNAS 03):
most cited work on
experimental design for
network identification.
We do not use
quantizations: our
method works better
and is 2 orders of
magnitude faster
They require node
in-degree ≤ 3
(unrealistic in
scale-free networks),
we do not [comparison
done on such graphs]
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Related Work. Conclusions

Related Work

Much work on disturbed linearized ODE models.
Estimation, no inference, no experimental design (except Tegnér
et.al.)
Sparse Bayesian Learning (Tipping, 01; Rogers, Girolami, 05)
No experimental design. Uses non-log-concave Student-t prior.
EP more general than SBL
Markov Chain Monte Carlo (Park, Casella, 05)
Much slower than our method (too slow for large-scale
experimental design). Hard to assess convergence even for
experts
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Related Work. Conclusions

Conclusions

Fast accurate approximate inference, experimental design in
disturbed linearized ODE setup
Network sparsity is key prior assumption. Experimental design
can lead to large savings
Can be used with time-course measurements just as well
Robust, easy-to-use method. Code with Matlab interface will be
released
Linearized ODE approach is limited:

Small, controlled u∗ to stay in linearity region (experimental
techniques?), but large u∗ for better SNR
No saturation, Michaelis-Menten, etc

Bayesian inference and experimental design for (simple)
non-linear ODEs of biochemical kinetics?
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Related Work. Conclusions

Conclusions (II)

Other applications of sparse (generalized) linear models, in
systems biology and beyond (natural image statistics, neural spike
coding, adaptive control, etc)
Applications to dynamical or nonparametric models?
Submitted for journal publication
Details:
M. Seeger, F. Steinke, K. Tsuda
Bayesian Inference and Optimal Design in the Sparse Linear
Model, AI and Statistics 2007
www.kyb.tuebingen.mpg.de/bs/people/seeger

Useful for your work? Do not hesitate to get in touch
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