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Overview

◦ MolPAGE study in genomic epidemiology

◦ Use of measures of relatedness on individuals for estimating genetic and

technical variability in molecular phenotypes

◦ Bayesian Variance Components Models

- illustrated for Spectral data: ClinProt MALDI-TOF data

◦ Co-variance components models
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MolPAGE

◦ MolPAGE stands for Molecular Phenotyping to Accelerate Genomic

Epidemiology. Funded under EU FP6.

◦ Take a common biological sample (fat, urine and plasma) from a set of

relateds (twins) and molecular phenotype them on a number of platforms

(i) Epigenomics (genome-wide methylation profiles)

(ii) Gene expression (Affy)

(iii) Proteomics (ClinProt; peptidomics; antibody arrays)

(iv) Metabon/lomics (NMR, LCMS)

◦ The first phase is on quantifying the genetic (heritable) components of

variation of the molecular traits and experimental variation (robustness)

inherent in the measurement of the molecular phenotypes.
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◦ Second stage is in integrative genomics
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Biomarkers

◦ The motivation for MolPAGE and a major research pursuit in genomic

epidemiology is the search for molecular biomarkers of human disease

◦ Biomarker:

“A measurable biological trait (molecular or physiological) which

associates with the onset or progression of disease”

◦ Traditional biomarkers include,

- Cholesterol, blood preasure, BMI

- ER status (breast cancer)
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Uses of Biomarkers

There are three major uses for biomarkers

◦ Profiling patients with increased disease risk

“It is much more important to know the kind of patient that has a

disease than to know the kind of disease a patient has” -

π(x|y) vrs. π(y|x)

- Cholesterol (heart disease)

◦ Prognosis – more accurate prediction of disease progression

- Number lymph nodes positive (breast cancer)

◦ Subtyping – towards “personalised medicine”

- Oestrogen receptor (ER) status (breast cancer)
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Features of a Good Biomarker

A number of features affect the utility of a biomarker (over and above

prediction accuracy)

◦ Stability

- both in variation of the biomarker trait over time and, as important,

- sample storage

◦ Generality - coverage

◦ Ease of measurement: stability and accuracy of the measurement

platform

◦ Non-invasive

◦ Cheap (relatively)
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Genomics and Biomarkers

◦ Genomic technologies have opened up the prospect for finding new

molecular markers for familial and non-familial genetic disease
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MolPAGE Study design

◦ At the first stage we are performing a twin study to analyse biological

and technical variation

◦ Twins provide a powerful design for inferring genetic effects

- blocked for in utero, dietary and socio-economic effects due to

upbringing

- known amount of genetic sharing between identical (MZ) and

non-identical (DZ) twins
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Twin Study

◦ Twins were contacted from St. Thomas’ UK Adult Twin Registry of

10,000 twins

◦ The initial study has 77 twin pairs

- 56 MZ (identical) twin pairs (31 twin pairs gave samples twice to

capture longitudinal effects)

- 21 DZ (fraternal) twin pairs

- Fat, Urine and Plasma samples are taken

- In total 215 samples from the 154 individuals (split into two aliquots,

430 aliquots)
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◦ The same biological samples are shipped to each technological partner

for molecular phenotyping (to allow for direct comparison and integrative

genomics), at least 3 technical replicates per aliquot.

◦ We will denote a generic molecular phenotype measurement as

Yijkl

for twin pair i ∈ {1, ..., 77}, twin j ∈ {1, 2}, visit k ∈ {1, 2}, aliquot

l ∈ {1, 2}.
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Statistical Model

◦ We analyse many different molecular phenotypes

◦ Useful to have a common statistical structure for the model
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Twin Model

Yijkl = µ + aij + dij + ci + eij + vijk + lijkl + bB(i,j,k,l) + εijkl

µ : overall mean

aij : additive genetic effect

dij : dominant genetic effect

ci : common environmental effect

eij : individual environmental effect

vijk : individual visit effect

lijkl : aliquot effect

bB(i,j,k,l) : batch effect

εijkl : residual error
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Covariance of genetic components

◦ Measures of expected relatedness allow us to estimate the genetic

(heritable) components of variation

◦ Since MZ twins are genetically identical ai1 = ai2 and di1 = di2 if twin

pair i is MZ.

◦ DZ twins share on average half of their genetic material and

Corr(ai1, ai2) =


 1 1/2

1/2 1




Corr(di1, di2) =


 1 1/4

1/4 1
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Twin Model

◦ The goal of our analysis is to partition the variability in the phenotype

value into that attributable to different sources,

- genetic (aij and dij )

- environmental (ci, eij , vijk)

- technical/experimental (lijkl, bB(i,j,l,k))
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◦ The genetic components, aij and dij and the common environment ci

are not identifiable in the likelihood and so we typically are interested in

the proportion of variance attributable to

familiality = [aij + dij + ci]
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Bayesian Model

◦ The effects are unique to an individual therefore we seek to model them

using hierarchical structure, for example,

{ai1, ai2} ∼ MV N(0, σ2
aΣ)

◦ where Σ is the correlation structure and we adopt a prior

σ2
a ∼ π(·)

◦ and interest is on the posterior distribution π(σ2
a|Y ) which can be

obtained using MCMC (with analytic integration of the actual effects, aij

etc)
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Variance Decomposition

The total phenotypic variance is

σ2
Y = σ2

a + σ2
d + σ2

c + σ2
e + σ2

v + σ2
l + σ2

b + σ2
ε

and the familiality is

f2 =
σ2

a + σ2
d + σ2

c

σ2
Y
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Gibbs Sampling

◦ The joint distribution of the variance components is not known explicitly

and we cannot sample from it directly.

◦ However, we can sample from the conditional distributions of each

component (conditioned on all the others).

◦ The joint distribution is stationary w.r.t. the transition rule determined by

the conditional distributions. Sequential draws from the conditional

distributions are thus a sample from a Markov chain whose stationary

distribution is the joint.
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Choice of prior distributions

◦ We consider the following priors:

- Gamma distribution on the precision, 1/σ2
? ∼ Gamma(ε, ε).

- Uniform distribution on the standard deviation, σ? ∼ U(0, C).

- Half-Cauchy distribution on the standard dev., σ? ∼ hC(s).

◦ When the number of random effects that share a variance component is

large (e.g. there are 154 eij ∼ N(0, σ2
e ) the choice of prior does not

affect much the posterior distribution.

◦ For all variance components except σ2
b we choose a uniform prior, but

since there are only 5 batches more care needs to be taken in choosing

the prior.
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Identifiability

◦ The parameters a, d and c are not all identifiable in the likelihood.

◦ One of the benefits of working in a Bayesian framework is that we define

the model to match the underlying structure, regardless of identifiability.

◦ The joint posterior distributions provide us with important insight into how

variance can be “transferred” between the variance components a, d

and c, giving us information about equally valid parameter values
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Identifiability

◦ From a Bayesian perspective:

What you do or do not observe should not influence the model you adopt

for the underlying process

◦ That is, you write down the model you believe underlies the data

generating process and then condition on the data to hand
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Case study using ClinProt proteomics
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ClinProt MALDI-TOF Data

◦ Magnetic beads with functional surfaces are used to bind proteins and

peptides from a sample (plasma, serum or urine).

◦ After elution the captured proteins and peptides are analysed in a

MALDI-TOF mass spectrometer.

◦ We perform pre-processing of the spectra, including denoising, baseline

subtraction, normalisation, alignment and peak extraction.
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Analysis of Peaks

◦ Peak areas are extracted and area under the peak is treated as

phenotype Yijkl

◦ Initially we treat each peak independently

◦ This is equivalent to stating that (initially) we allow for interactions

between the peptides and the genetic effects

◦ We run our MCMC simulations and report posterior distributions on the

variance components

◦ For example, the output for peptide abundance under one peak would

look like
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Output

◦ There are typically many peaks per spectra

◦ Our code does the spectral preprocessing, extracts peaks, runs the

mcmc, and then reports posterior summary statistics
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Covariance Components models of association

◦ We are interested in associating changes in molecular phenotype levels

with changes in a clinical phenotype

◦ We have developed a new approach for this when we have data on

relateds

◦ Consider a clinical phenotype, Z and molecular phenotype Y

◦ A typical model would consider testing

π(Z|Y ) 6= π(Z)
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◦ However, it is interesting (we believe) to look for genetic components of

association

◦ That is,

π(Zgenetic|Ygenetic) = π(Zgenetic)

◦ We do this by investigating association between the genetical

components of variation
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◦ Consider the two phenotypes, one clinical and one molecular

Yijkl = µ + a
(Y )
ij + d

(Y )
ij + c

(Y )
i + e

(Y )
ij + v

(Y )
ijk + l

(Y )
ijkl + b

(Y )
B(i,j,k,l) + ε

(Y )
ijkl

Zijkl = µ + a
(Z)
ij + d

(Z)
ij + c

(Z)
i + e

(Z)
ij + v

(Z)
ijk + l

(Z)
ijkl + b

(Z)
B(i,j,k,l) + ε

(Z)
ijkl

◦ We can put a joint dependence structure on “interesting” components



MolPAGE 30

◦ For example,

{a(Y ), a(Z)} ∼ N(0, ρgσ
(Y )
a σ(Z)

a )

{d(Y ), d(Z)} ∼ N(0, ρgσ
(Y )
d σ

(Z)
d )

◦ with prior say

π(ρg) ∼ U(−1, 1)

◦ and then investigate π(ρg|Y )

◦ This looks for association in the genetical axis of variation between Z

and Y

◦ That is, in genetical projections orthogonal to that variability spanned by

environmental and technical effects

◦ Summarise posterior mean associations
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Summary

◦ Information of relatedness allows us to separate out genetical from

environmental factors in molecular phenotypes

◦ Bayesian framework very useful for what we do

◦ Covariance components models allow us to explore interesting axes of

association

- interested in extensions in graphical models/networks
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