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• Microarray technology has had a great impact on cancer research

• In the past decade many studies have been published applying 
microarray data to breast cancer, ovarian cancer, lung cancer, …

• Pubmed: cancer AND microarrays

– 6325 articles 

– First article in 1996 Nature Genetics

Introduction
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• However, most cancer studies focus only on microarray data …

• … while these data suffer from some disadvantages:

– High dimensional and “much” data, however many variables and few 

observations (i.e. patients)

– Low signal-to-noise ratio: e.g. accidental differential expression

– Influence and difficulty of pre-processing: assumptions

– Sample heterogenity

Introduction
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• In our opinion integration of other sources of information could alleviate these

disadvantages

• Recently there has been a significant increase of publicly available databases:

– Reactome

– Transfac

– IntAct

– Biocarta

– KEGG

• However still many knowledge is contained in publications in unstructured form 

• … and not deposited in public databases where it can be easily used by algorithms

Introduction
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Introduction

• Goal: 

– Mine the vast resource of literature abstracts 

– Transform it to the gene domain

– Combine it with expression data

• How:

– Probabilistic models provide a natural way to integrate prior 
information by using a prior over model space

– More specifically:

• Text information incorporated in the structure prior of a 

Bayesian network

• Applied to predict the outcome of cancer patients



July 26, 2007 ViennaOlivier Gevaert

Overview

• Introduction

• Bayesian networks

• Structure prior

• Data

• Results

• Conclusions



July 26, 2007 ViennaOlivier Gevaert

Overview

• Introduction

• Bayesian networks

• Structure prior

• Data

• Results

• Conclusions



July 26, 2007 ViennaOlivier Gevaert

∏
=

=
n

i
iin xPaxpxxp

1
1 ))((),...,(

• Probabilistic model that consists of two parts:

– Directed acyclic graph

– Local probability models

Bayesian networks
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• Discrete or continuous variables

• Different local probability models
– Discrete variables:

• Conditional probability tables Heckerman et al. Machine Learning 1995

• Noisy OR

• Decision trees

– Continuous variables:

• Gaussian Heckerman et al. Machine Learning 1995

• Non-parametric regression Imoto et al. Journal of bioinformatics and computational biology 2003

• Neural networks

Bayesian networks
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• All these local probability models have different properties 

and (dis)advantages

• We chose discrete valued Bayesian networks because:

– Exact computation 

– Non-linear (i.e. arbitrary discrete distributions can be 
represented)

– Space of arbitrary non-linear continous distributions is very 
large

– Limited data set size may not allow to infer non-linear 

continuously valued relations

Hartemink PhD thesis 2001

Bayesian networks
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Discretization

Gene 1

Gene 2

Gene 1

Gene 1

Gene 2 Gene 2

Univariate discretization

Multivariate discretizationProblem: loose relationship between the 
variables which is crucial for learning Bayesian 

networks
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Discretization

• Multivariate discretization in three bins by:

– First simple discretization method with a large number of 
bins (interval discretization or quantile discretization)

– Join bins where Mutual information decreases the least

– Iterate algorithm untill each gene has three bins

Hartemink PhD thesis 2001
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• Bayesian network consists of two parts a DAG and CPTs 

• … thus model estimation in two steps:

– Structure learning

– Parameter learning

Bayesian networks
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• Mostly the structure is unknown and has to be learned from data

• Exhaustively searching for all structures is impossible

• As number of nodes increases, the number of structures to evaluate increases 
super-exponentially:
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• K2 algorithm Cooper & Herskovits Machine learning 1992

– Greedy search

• ordering to restrict possible structures

• suboptimal

– Scoring metric

• Scores a specific structure that was chosen by the search procedure

• Bayesian Dirichlet score

Bayesian networks
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• Parameter learning

– Straightforward updating the dirichlet priors

– i.e. counting the number of times a specific situation occurs

Bayesian networks
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• The set of variables that 
completely shields off a 

specific variable from the 

rest of the network

• Defined as 

– Its parents

– Its children 

– Its children's other 

parents.

Markov blanket
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• Bayesian networks perform feature 
selection

• The Markov blanket variables 

influence the outcome directly …

• … and block the influence of other 

variables

Markov blanket
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Structure prior

( ) ( ) ( )
( )

( )
( )∏∏ ∏

= = = 











Γ
+Γ

+Γ
Γ

∝
n

i

q

j

r

k ijk

ijkijk

ijij

ij
i i

N

NN

NN

N
SPDSp

1 1 1
'

'

'

'

Structure prior

Parameter prior

• Bayesian model building allows integration of prior information:

– Structure prior

– Parameter prior (not used here, uninformative prior)

Heckerman, Machine Learning, Vol. 20 (1995), pp. 197-243. 
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Structure prior
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Structure prior

How do we get the structure prior?

• Two approaches have been used to define structure priors:

– Penalization methods

• Score structure based on difference with prior structure

– Pairwise methods

• Being a parent of a variable is independent of any other parental 

relation

• Our information is in the form of pairwise (gene-gene) 
similarities therefore  we chose a pairwise method:

– Structure prior then decomposes as:
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Structure prior

• The probability of a local structure is then calculated by:

• How do we get the                          and the              ?

• … from 
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Structure prior

• Genes xi are represented in the Vector Space Model

- Each xij corresponds to a term or phrase in a controlled 
vocabulary

- We used the national cancer institute thesaurus

- Using a fixed vocabulary has several advantages:

- Simply using all terms would result in very large vectors, 

whereas use of only a small number of terms improves the 
quality of gene-gene similarities

- Use of phrases reduces noise in the data set, as genes will only 

be compared from a domain specific view

- Use of multi-word phrases without having to resort to co-

occurrence statistics on the corpus to detect them

- No need to filter stop words, only cancer specific terms are 

considered
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Structure prior

1 abstract

Normalization + averaging

Iterate for all genes
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Structure prior

• Our goal is to predict the outcome of cancer patients

• One extra variable: outcome of the patient, e.g. 

survival in months, prognosis (good/poor), metastasis 

(yes/no)

• Therefore we need also a prior for the relationship 

gene ⇔ outcome

• Based on average relation between specific terms 

(outcome, survival, metastasis, recurrence, prognosis) 

and gene
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Structure prior

• Scaling

– A fully connected Bayesian network can explain any data set 
but we want simple models

– The prior contains many gene-gene similarities however we 
will not use them directly

• We will introduce an extra parameter: mean density

• “the average number of parents per variable”

• Structure prior will be scaled according to this mean density

• Low mean density ⇒ less edges ⇒ less complex 
networks
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Structure prior

Scaling by mean density

Text prior
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• Veer data:

– 97 breast cancer patients belonging to two groups: poor and 
good prognosis

– Preprocessing similar to original publication

– 232 genes selected which correlated with outcome

• Bild data:

– 3 data sets on breast, ovarian and lung cancer

• 171 breast cancer patients

• 147 ovarian cancer patients

• 91 lung cancer patients

– Outcome: survival of patients in months
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Evaluation of models

• 100 randomizations of the data with and without the 

text prior

– 70% for training the model 

– 30% for estimating the generalization performance

• Area under the ROC curve is used as performance 

measure

• Wilcoxon rank sum test to assess statistical 

significance

– P-value < 0.05 is considered statistically significant
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Results

<6e-06§0.74(0.08)0.79 (0.07)4

0.00577§0.75(0.08)0.79 (0.08)3

<2e-06§0.75(0.07)0.80 (0.08)2

0.00039
6§

0.75(0.08)0.80 (0.08)1

P-valueUniform prior 
mean AUC

Text prior
mean AUC

Mean 
density

• Veer data:

Average number of parents 
per variable
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Markov blanket

• Next, we build a model with and without the text 

prior called TXTmodel and UNImodel resp.

• We investigated the Markov blanket of the outcome 

variable
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Results

• TXTmodel

– Genes implicated in breast 
cancer

• TP53, VEGF, MMP9, 

BIRC5, ADM, CA9

– Weaker link

• ACADS, NEO1, IHPK2 

– No association

• MYLIP

• UNImodel

– Breast cancer related

• WISP1, FBXO31, 

IGFBP5, TP53

– Other genes

• Unknown or not related
0.58Average text score0.85Average text score
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1TP53
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0.5LAGE3

0.58FBXO311BIRC5

0.5TSPYL51MMP9

0.5IHPK21CA9

0.58LGP20.5IHPK2
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Results

• Average text score of 
TXTmodel (0.85) is higher 
than UNImodel score (0.58) 
as expected

• TP53 and IHBK2 appear in 

both sets
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Results

• Bild data

• Mean density is set to 1

0.025400.740.76Lung

0.000020.630.69Ovarian

0.000200.750.79Breast

P-valueUniform 
prior 
mean AUC

Text prior
mean AUC

Data set
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Conclusions

• Verified the actual influence of the text prior:

– Improves outcome prediction of cancer compared to not 
using a prior

• Both on the initial data set and the validation data sets

– Allows to select a set of genes (cfr. Markov blanket) based on 
both gene expression data and knowledge available in the 
literature related to cancer outcome
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Limitations

• Making the connection between the outcome and the 

genes in the prior is currently arbitrary 

– Investigating ways to automize it

– E.g. Based on terms characterizing well known cancer genes

• No validation yet of the Markov blanket of important 

genes in the posterior network

– No ground truth
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Future work

• Continually developing text prior

– Gene name recognition in abstracts instead of manually 
curated references

– Reduction of the literature to cancer related journals or 
abstracts mentioning “cancer”

• Adding other sources of information

– Protein-DNA interactions (TRANSFAC)

– Pathway information (KEGG, Biocarta)

• Long term goal: 

– Developing a framework for modeling regulatory networks 
behind cancer outcomes
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Future work 
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Parameter prior
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