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GC content biases first noted
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They used Illumina 1G data.



From Dohm et al 2008

Roughly linear GC effect on reads
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Another view: a human data set

Reads mapped to Chrom. 2 (both ends mapped)
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* Position of reads on forward strand of chr 2
 Binned to 10 kb intervals
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The GC bias is non-linear in human data

(5 kb bins below, but it looks similar for all bin sizes)

Data — M. Robinson
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Horizontal axis: fraction GC; lines are loess curves in all cases
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Our goals

To study the nature of the GC content effect,

Try to understand relation between the effect
and study design, i.e. its causes

Find how best to correct for it

Perhaps identify designs that minimize it.
See especially:

Analyzing and minimizing PCR amplification bias in lllumina
sequencing libraries. Aird D, Ross MG, Chen WS, Danielsson M,
Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A. Genome
Biol. 2011 Feb 21;12(2):R18.

Systematic bias in high-throughput sequencing data and its
correction by BEADS. Cheung MS, Down TA, Latorre |, Ahringer J.
Nucleic Acids Res. 2011 Jun 6. [Epub ahead of print]



Digression: mappability

« Some % of reads not mapped due to ambiguity
(depends on read length & mapping criteria)

« Mappability = the probability that a read
beginning in region can be successfully mapped.

« Can take a simple 0-1 approach (as here), and
bin.

Map vs. Counts bins




Our data

Two samples of DNA from an ovarian patient: one sample
from the tumor, the other matched normal from their white
blood cells.

Each sample was turned into two separate fragment libraries,
differing in fragment length distribution.

Fragments were sequenced to 75bp at both ends using the
standard lllumina procedure.

Each sequenced read pair was mapped back to the human
reference genome using bwa (version0.4.9). [A few more
details are omitted here.]



Most of the time we present results
for just one chromosome

But it doesn’t matter....



Estimated fragment count
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Is the GC-bias specific to a lab, protocol, sample,
library preparation, sequencing machine,....?

E.g. can we adjust binned tumor counts by those of a
matched normal sample, or, in a Chip-seq experiment,
|IP-counts by input of other control counts?

11



Count
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GC effect of different Normal libraries (10 kb)
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Conclusion: the effect seems largely to be run specific.




Is there a right bin size?
People have used 100bp, 5 kb, 10 kb, 20 kb, 100 kb.
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Variation about loess curve for
different bin sizes

Loess bin size (kb) 10 5 2 1 0.5
Library 1 (MAD) 49.1 47.8 45.1 43.4 43.4
Library 2 (MAD) 26.0 24.7 22.5 21.7 23.6

0.2
52.2
41.6
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Avoiding binning: single position analyses
(also done by Cheung et al, 2011)

We work with a random sample of ~10M mappable locations
on the genome locations denoted by x. All paired end,
and forward strand, unless otherwise stated.

The fragment count at location x may depend on the GC
content of the window W, , = [x+a, x+a+l), which we will
denote by gc = GC(x+a,l).



A) Random sample locations  B) Partition by GC window C) Count reads and read-rate
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Here the window begins at the base of interest. It need not do so.



What'’s interesting about these
read rate vs GC-content curves
as we vary window size and location?

Superficially: their shape, that is, their deviation
from flatness, which is GC-independence.

More interestingly, their ability to help explain
variation in read depth. We return to this later.

Let’s keep it superficial for now, and measure
deviation from flatness.



Total variation distance from GC independence.

A surrogate measure of how much is explained by conditioning
on GC.

Reads by GC, 32bp Window
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= Read Mean
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TV distance = a weighted average of the brown lengths,



In symbols,

A FC A F
)Lgc =— ’ A=—
N n
gc
l «N,. ~ &
TVIW )=—% A=Al
( a,l) 2)Lgcz=0n 8¢

where W, is the window [x +a, x + a+1).

Next we look at some TV values. We can vary a
and /, and we do so, separately here, for simplicity



TV Score
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TV of models from fragment 5' end

—— Library 1
—— Library 2
Fragment Lengths
| | |
0 100 300 400

GC window length (1)

Fragment Rate

0.02 0.04 0.06 0.08 010

0.00

GC Curve for best window (a=2, |=176)

B — Fragment Rate

_ Frac. Locations
(scaled)

0.0 0.2 0.4 0.6 0.8 1.0

GC




Varying the location of a fixed size window
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Interim conclusion from many such plots

The “best” interval is in the middle of the fragment,
excluding the bits at the very ends (see later).

Next steps: dealing with both strands, and fragment size.



Forward and reverse strands behave similarly

TV Score
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Stratifying by fragment size s

A FSC
)Lgc - Ngs

gc

24



Fragment length

Fragment size matters

Rates by fragment length and GC Single length GC curves
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GC count in fragment GC fraction

Conclusion: GC bias of not simply determined by the
ratio GC count/fragment length: there is an interaction.



And now for some predictions
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Predicted rates at a given mappable position
VaN AS
‘ux = CE )\’GC(x+a,s—m)
S
luB = Elux
x&EB

Here cis a scaling constant to equalize the predicted and the
observed median. From now on, our window is the fragment
minus 2 bp at each end, i.e. a=2, I=s-2.



Predicted and observed bin
counts for bins of different sizes
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ing.

to be work

the predictions seem

Conclusion



Some other biases/models
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Breakpoint effects

(cf Hansen et al, Nucleic Acids Research, 2010)

Fragment rate by dinucleotide at breakpoint
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Fragment Rate

GC before fragment

End effects

GC overlaps read

GC at fragment center
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Slight AT preference

Two ends model: uses GC(x,))+GC(x+s-1,1).

We use s=180, I=30 below.
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40 60 80 100 120

20

Some other predictions
(all aggregated to 1kb bins)

Read model Two-end model Fragmentation model
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Fraction GC in all cases
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Conclusion: These predictions don’t work too well.



How well does our correction work?

Theory
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Spread of observed counts around predictions
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Conclusion: we don’t “explain” everything...



How well does our correction work?

Practice
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Copy number: corrections to normal samples

Observed counts 1 kb {(normalized) Histogram
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Copy number: crude corrections to
tumor samples

Tumor observed counts (1 kb) Histogram

Caorrected by fragment maodel

. i More work to be
o | Db ST done here.
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ChlP-seq data (A. thaliana)

Here two initially incompatible technical replicates

Uncorrected ratios GC curves (a=2, [=122) Corrected ratios
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Problem mainly solved (cf Cheung et al, 2011)



Other examples and phenomena
(if time)
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Plots for ChiP-seq sample rep 1, A. thaliana

GC effect TV of models from fragment 5" end
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Counis

Fragmeni Rale

Plots for one 1,000 genomes sample
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Fragments
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Summary

We seem to have ruled out GC-content of the read parts of the
fragment as producing the GC bias.

Similarly we seem to have ruled out GC content on a scale more
“global” than just the fragment.

Base composition (not just GC-content) around the two fragment
break points plays a noticeable role, but not enough to explain
everything.

Speculation over causes is left for another day. There now
seems little doubt that PCR amplification bias accounts for the
majority, as shown in a beautiful recent paper by D. Aird et al
(2011) in the Feb 21 issue of Genome Biology.
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* Yuval Benjamini
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And to you...

Reference: http:/www.stat.berkeley.edu/25 Technical Report 804
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