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Active translation
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Pseudo-polysomes

MIRNA-Guided Repression
of Translational Initiation

In the absence of mMIRNAS, the
translation initiation factor elF4E binds
to the 7-methyl-guanine (m7G) cap.
elF4G binds to both elF4E and the
poly(A)-binding protein (PABP) and
allows for the establishment of a loop,
required for translation initiation.

Upon miRNP binding to the 3' UTR,
Ago complex competes with elF4E for
cap binding. The interaction of Ago
with the cap releases elF4E/G and
Inhibits initiation. (Meister, 2007)




Translating protein or dumping mRNA

Active translation 2 Translational repression
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Ribosome

Commitment to decay

proteins

Aggregation in P body

m  Messenger ribonucleoproteins (mRNPs) can be 1n a translationally active state

that 1s assoctated with polysomes (1) or in an inactive state (2—4) as those bound
to miIRNAs.




Implications in cancer

The prototype: Chronic lymphocytic leukemia (CLL), the most frequent leukemia in
adults in the Western world, is characterized by predominantly non-dividing
malignant CD5(+) B cells over-expressing the anti-apoptotic Bcl2 protein

Discovery: 13914.3 deletions in CLL span miR-15/16 locus

D13S11 D13S27 GCT16C

(@)
0
—
.
)
™
I
(@]

ex3 ex2exkxlex2




miRNA microarrays

Prof. Croce’s lab developed the first microarray based platform
for assay of miRNAs.

Platform: one-colour chip (similar to Codelink system), spotted
oligonucleotides, precursor and mature miRNAs.

Versions 1 (2004) , 2 (2005), 3 (20006), 4 (2007) with increasing
numbers of miRN As.

Chip ->Image analysis (Axon) — data extraction (Gene Pix Pro)
Parsing of data in microRNA database (over 20,000 chips)
Statistical analysis/Visualization

Publication /Submission to public repository




Breast Cancer
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Comprehensive analysis of 6 solid cancers

m Five hundred and forty samples, including a total of 363 primary tumors and
177 normal tissues, were used.

m The solid cancers represented were lung carcinoma, breast carcinoma,
prostate carcinoma, stomach carcinoma, colon cancer, and pancreatic

endocrine tumor.
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Clustering
of
SIX
solid cancers
by
MIRNA expression

(year 2005)
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Differential Expression of microRINA in solid cancers
-year 2009-
(2505 solid cancer samples vs. 806 normal samples)
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Question

m Can we replicate and confirm microarray results?
m On different patient cohorts?
m With different techniques?




miR-21 BExpressed at Higher Levels in Colon Adenocarcinomas
With Increasing Expression in Advanced Tumors

Maryiand test cohort (microarray data)

4

Hong Kong validation (quantitative reverse transcription polymerase
chain reaction data)
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MicroRNA microarrays were used to measure 7R-27 expression levels in the Maryland test cohort.

Dot plots represent 7:R-27 log2 (tumor:nontumor ratios) for paired tissues as calculated from microRNA
microarrays from the original cohort. Values greater than 0 indicate tumors with expression values higher
than nontumorous tissue.

Tissue types have been ordered from TINM stage I to stage IV tumors. Bars indicate median value.




High 7:R-21 and Poor Survival in Patients With Typical
Adenocarcinoma Histology
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The association of high 7/R-27 expression in tumors with poor prognosis is
validated by qRT-PCR in an independent cohort (Honk Kong).

High expression i1s based on the highest tertile (3.3-fold to 8.7-fold higher than
nontumor). Log-rank P values are from Kaplan-Meier analysis.




miR-155 transgenic mice develop acute lymphoblastic
leukemia/high grade lymphoma (Costinean et al, 2006, 2009)

MiR155 transgene
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The leukemias start at approximately 9 months and are preceded by a polyclonal pre-B
cell proliferation, with variable clinical presentation, are transplantable and develop
oligo/monoclonal expansion. The B cell precursors have the highest miR-155
expression and are at the origin of the leukemias. SHIP and C/EBPbeta, two
regulators of the IL-6 signaling pathway, are direct targets of miR-155.
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Question:

m What 1s the genomic impact of miRNA on
proteins and mRNAs?




The case of miR-124
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Response of proteins from messages with single miR-124 3’-UTR sites.

Plotted 1s the fraction of proteins that change at least to the degree indicated on the x
axis. Proteins from messages with multiple 3°-UTR sites were not considered.

Omer sites that were part of larger sites were not included in the 6mer distribution, and
7mers that were part of 8mers were not included in the 7mer distributions.
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The impact of deleting mir-223 in mouse
neutrophils
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Analysis of neutrophils isolated from mice monitoring the
effects of miR-223 loss on messages with single miR-223 sites

in their 39 UTRs.
Plotted is the fraction of messages that changed at least to the

degree indicated on the x axis




Reverse assay:
from mRNAs to miRNAs

Messenger RNA profiles
(Atfymetrix)

!

miRNA agents




The cumulative distribution function (ECDF) plot of the
Kolmogorov-Smirnov test correctly identify target coding genes
specifically controlled by microRNAs.

miR-124a targets
are down-regulated
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miR124 ttestGDS2846_miR124_mouse2human

T-test scores from the miRINA assay Vs. the control cells were analyzed. A) miR-124 over
expression in mouse neuroblastoma (GDS2846). miR-124 correctly detected as the miRNA
with the most down-regulated target genes. The blue curve (miR-124 target genes) on the
left and above the black non—targets curve indicates down-regulation of messenger RNAs.
The red dotted curve is that expected by random association.




Extracting miRNA info from 66 Affy
experiments
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are colored in yellow.
miRNA grouping was
obtained by MCL clustering
and 1s indicated by the
colored edges. Seventeen
out of 66 tested cellular
conditions display highly
significant miRNAs.




miRNA gene networks

*Bayesian networks were built for different tissues and diseases.

» For each tissue or disease all the mature miRNAs were considered.
*Then the expression values were preprocessed to filter out non varying
MIRNAs.

*The MCL graph-based clustering algorithm to extract co-regulated genes

from miIRNA networks.




The miRNA network in solid cancetrs

(2532 samples, 31 cancer types, 120 miRNAs)
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miRNA network of CLL (254 samples, 3 MCL clusters)
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miRNA network of AML (589 samples, 2 MCL clusters)
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Comparison of miRNA networks in normal lung

and adenocarcinoma
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Conclusions from chips

 mMIRNA signatures are excellent classifiers and related to fundamental

pathways

*miRNA profiles can be inferred by mRNA profiles.

*miRNA networks are reprogrammed in cancer and leukemias and reveal

“rebel” mIRNAS.




MIRNA profiling and RNA discovery
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Data Management

B miRNA sequencing (Profiling)
= Short RNA sequencing

m Multiplexing allows 48 samples to be run at the same time

m Activation of pipelines
= Small RNA pipeline (ABI)

= In house novel pipeline

m Database
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. PRIMARY PRIMARY 397 4 . miRBase_Counts_FilelD

. Anno tatlon dir_and_csfasta_filename UNIQUE 397 P . dir_and_csfasta_filename
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I Normahz atlon sample_name INDEX 397 # X sample_name
project_name INDEX 49 P . project_name
sample_ID INDEX 397 ¢ sample_ID




hgl9 contigs generated from
short RNNA reads

m Merging all short reads detected in at least 5
samples with at least 3 reads:

> > 100K different short non repetitive sequences




miR-21 contigs

UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly
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Visualization of miRNA processing
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NanoString




CRC and Normal Colon profiles using different
detection techniques (average values)
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CRC and Normal Colon profiles using different
detection techniques (average values)
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CRC: Validation across platforms
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CRC: Validation across platforms

SOLiD vs RT-PCR ABI

SOLiD vs RTPCR (7/9
concordant trends within
CRC/Normal — 2 yellow
discordant not included)

R = 0.51, pvalue =0.06




CRC: Validation across platforms

Nanostring vs RTPCR
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Some more reasons to use Next
Generation Sequencing for miRNAs?

Detection of isoforms (1somiRNAs)
Extreme specificity

Detection of Viral miRNAs

Detection of novel miRNAs

Detection of other short RNAs
Detection of mutations (reliable in RNA?)




Genomic Analysis of Mutations Extracted by
Sequencing
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INPUT

= SAM (Sequence Alignment/Map) format
v Supports:

m short/long reads
m compatible with different sequencing platforms
m single-read/paired-end
v Generable by several aligning packages, such as BWA, MAQ, SHRIMP,
BFAST, PerM, Mosaik, ELAND, PASS, SOLiD LifeScope™




SNP/SNV/InDel CALLING

A

Ao - -

For each mismatch, extracts the genomic coordinates (chromosome and
position), reference base, the first and second calls, with respective quality
and counts, and repetitivity.




On the agenda:

*miRNA and other short RNA profiling in leukemia and
cancer (about 500 sequenced samples)

*miRNA mutation detection from RNA (editing?)

*miRNA mutations detection from genomic sequencing
(SNPs?)




Many Thanks for Your

Attention!




