

The P38 network and a miR-9 control mechanism as driving GBM disease outcome

Sol Efroni
The Systems Biomedicine lab
Bar Ilan University
Israel

CAMDA challenge

"gaining better insight from an integration of heterogeneous large-scale data"

"the Glioblastoma multiforme subset of The Cancer Genome Atlas (TCGA)"

Data

This repository is unusual in that it provides publicly, for several hundred patients, profiles of

- gene transcript expression (435 cancer patients versus 11 controls)
- miRNA expression (426 tumour samples versus 10 controls)
- genomic DNA methylation (256 tumour samples versus a control)
- copy number variation (465 tumour samples versus 430 controls [402 matched normals])

TCGA

"...a comprehensive and coordinated effort to accelerate our understanding of the molecular basis of cancer through the application of genome analysis technologies, including large-scale genome sequencing"

Available Cancer Types	# Patients with Samples	# Downloadable Tumor Samples	Date Last Updated (mm/dd/yy)
Acute Myeloid Leukemia [LAML]	202	200	02/17/11
Bladder Urothelial Carcinoma [BLCA]	38	35	07/07/11
Brain Lower Grade Glioma [LGG]	50	50	07/10/11
Breast invasive carcinoma [BRCA]	801	532	06/30/11
Cervical Squamous Cell Carcinoma [CESC]	42	23	06/30/11
Colon adenocarcinoma [COAD]	380	333	07/07/11
Glioblastoma multiforme [GBM]	597	536	07/07/11
Head and Neck squamous cell carcinoma [HNSC]	93	93	06/06/11
Kidney renal clear cell carcinoma [KIRC]	502	499	07/10/11
Kidney renal papillary cell carcinoma [KIRP]	43	43	07/10/11
Liver hepatocellular carcinoma [LIHC]	45	45	07/07/11
Lung adenocarcinoma [LUAD]	237	170	07/10/11
Lung squamous cell carcinoma [LUSC]	213	184	07/06/11
Ovarian serous cystadenocarcinoma [OV]	594	586	06/24/11
Pancreatic adenocarcinoma [PAAD]	7	0	07/06/11
Prostate adenocarcinoma [PRAD]	83	83	07/07/11
Rectum adenocarcinoma [READ]	153	123	07/07/11
Stomach adenocarcinoma [STAD]	132	109	07/01/11
Thyroid carcinoma [THCA]	86	60	07/08/11
Uterine Corpus Endometrioid Carcinoma [UCEC]	350	270	06/30/11

CAMDA TCGA data

Target number of Glioblastoma multiforme samples: 500 (number subject to change)

Run Query on Glioblastoma multiforme

Glioblastoma multiforme		Number of Samples						
[GBM]	Total Copy Methylation Gene Expression E							
Tumor	536	534	281	495	426			
Matched Normal	469	469	0	0	0			
Unmatched Normal	40	30	1	11	10			

We are interested in a network view of the data

We are using the **network** as the **biomarker**

Which network?

Curated interactome

Parsed Curated interactome

Actual gene expression abundance experiment

Gene	Α	В	С	D	E	F
Expression	\checkmark	-	\checkmark	\checkmark	\checkmark	√

Sample 1

Gene	Α	В	С	D	Е	F
Expression	\checkmark	\checkmark	√	-	\checkmark	\checkmark

Sample 2

Gene	Α	В	С	D	E	F
Expression	\checkmark	-	\checkmark	\checkmark	-	√

Sample 3

Do the stories match?

How does this translate to high throughput?

Multiple pathways
over
Multiple samples

Microarrays

Generation of global pathway metric

And we are using this global pathway metric as a basis to biomark samples

Biomarker definition

The official NIH definition of a biomarker is: "a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention."

Biomarker

- Biochemical cholesterol
- Physical weight
- Physiologic Blood pressure, heart rate
- Anatomic ultrasound
- Histologic tissue under the microscope

Risk

Diagnosis

Prognosis

Phenotype comparison

Tumor

Normal

Basic Oncogenic Signature

- Recode the data into meaningful units
- Dimensionality reduction
- Intuitive analyses
- Experimental directions

Phenotypes

- Tumor/normal
- Genomic mutations
- Stage
- Smoker/non

Prognosis

Survival curves of mice after MNU administration.

Kawate H et al. Carcinogenesis 2000;21:301-305

Prognosis is practically the only phenotype we worked with in this data set

Back to TCGA GBM data

Back to TCGA GBM data

Gene Expression

Pathway representations

The p38 pathway is most significant

"p38 signaling mediated by mapkap kinases"

Across three different datasets

Supporting previous research shows: Nomura N et al. Phorbol 12-myristate 13-acetate (PMA)-induced migration of glioblastoma cells is mediated via p38MAPK/Hsp27 pathway. Biochem Pharmacol 2007, 74(5):690-701.

Copy numbers

Amplified genes

Gene Symbol	Tumor	Normal
HSP27	21%	2%
CREB1	27%	16%
TCF3	14%	2%
ER81	45%	6%
CDC25B	36%	20%

Deleted genes

Gene Symbol	Tumor	Normal
МАРКАРК3	20%	11%
LSP1	31%	25%
TH	37%	14%
YWHAZ	63%	27%
ALOX5	68%	7%
RAF1	13%	9%

Methylation

• 4 of the pathway genes methylated across all samples

Micro RNA

Pathway control mechanisms?

We found that 7 out of the 15 genes in the pathway have a possible binding site to miR-9.

miR-9 :: p-38 pathway

	Number of patients	R ² Correlation Value	P-value
Group1	241	-0.64	0
Group2	130	0.012	0.8876

Drug response

- patients are treated using a wide spectrum of 69 different drugs
- Classified drugs into two groups:
 - drugs that <u>target</u> genes in the p38 pathway

And

- drugs that <u>do not target</u> genes in the pathway

Out of the 69 drugs given to the patients 6 drugs target genes that takes part of the p38 **network**

Drug Name	Target	Pathway
Accutane	RARA	map kinase inactivation of smrt co-repressor
CCNU	STMN4	Signaling mediated by p38-gamma and p38-delta pathway
Celebrex	COX2	Signaling mediated by p38-alpha and p38-beta pathway
Cis Retinoic Acid	RARA	map kinase inactivation of smrt co-repressor
Sorafenib	RAF1	p38 signaling mediated by MAPKAP kinases
Tamoxifen	ESR1	Signaling mediated by p38-alpha and p38-beta pathway

Group1

- Low survival
- 169 patients
- Average overall survival time 433 days
- Median survival time 310 days
- All patients did not received p38 targeted drugs

Group2

- High survival
- 63 patients
- Average overall survival 896 days
- Median survival time 691 days
- All patients received p38 targeted drugs

Recap

- Pathway behavior over population, using prognosis as phenotype, surfaced the p38 network
- The p38 network is targeted by copy number variations
- The network as biomarker was proven robust in two additional datasets
- (negative) correlation between miR-9 expression levels and the pathway behavior suggested miR-9 as a control mechanism over the pathway
- miR-9 Binding sites in a subset of genes in the pathway support the hypothesis
- Drug treatment directed towards gene members of the p38 network affiliates patients with better prognosis
- Further work can now be done on **sequencing** data
- Experimentation

Acknowledgements

Lab Manager

Helit Cohen

Students

Rotem Ben-Hamo

H

Chen Rubinstein

Miri Gordin

Jennifer Benichou

Moriah Cohen

Shai Fleger

Ilana Brotman

Shai Shilo

NCI collaborators

- •Kenneth Buetow
- •Carl Schaefer
- •Sharon Greenblum

HUJI

Liran Carmel

Harvard

Francisco Quintana