Sample size considerations for the efficiency of extracting regulatory connections from a combined miRNA and gene expression data set

Smriti Shridhar

Chair of Bioinformatics Boku University Vienna, Austria.

miRNAs

Fig. miRNA biogenesis pathway

(Mendes et al., NAR, 2009)

Observed roles of miRNAs

Fields, S. (Science, 2001)

Integrating gene and miRNA expression data

identification of biologically relevant signals!

Challenges to integrating high-dimensional data

- Curse of dimensionality
 → variable selection
- Combinatorial explosion
 → filter using sequence analysis

Integrating gene and miRNA expression data

- if signal is strong -> smaller no. of samples

Integrating gene and miRNA expression data

Number of samples required?

Datasets used for comparing effect of sample sizes

- Glioblastoma Multiforme (Dataset 1)
 - malignant brain tumor
 - accounts for about 15 percent of all brain tumors
 - poor prognosis

Clichlastoma multiforma	Number of Samples						
[GBM]	Total	Copy Number	Methylation	tion Gene Expression	miRNA Expression		
Tumor	536	534	281	495	426		
Matched Normal	469	469	0	0	0		
Unmatched Normal	40	30	1	11	10		

Datasets used for comparing effect of sample sizes

- Ovarian serous cystadenocarcinoma (Dataset2)
 - a type of epithelial ovarian cancer
 - accounts for about 90 percent of all ovarian cancers
 - need for effective screening tests

Ovarian corous	Number of Samples						
cystadenocarcinoma [OV]	Total	Copy Number	Methylation	Gene Expression	miRNA Expression		
Tumor	586	585	534	584	582		
Matched Normal	569	569	0	0	0		
Unmatched Normal	19	18	9	9	8		

Comparision of datasets

• Glioblastomas

• Serous cystadenocarcinoma

- differ in
 - location within the central nervous system
 - sex distribution

Which ultimately affects-

- a) tendency for progression
- b) response to treatments

Common approaches to integrating high-dimensional data

- Factor analysis, component no. selected by
 - cross validation
 - information criteria (eg. BIC, AIC)
- Variable selection
 - sPLS with lasso penalization (Cao et al., Bioinformatics, 2009)
- Clustering based on Gibbs sampling (Bonnet et al., Bioinformatics, 2010)
 tight clusters

Learning Module Network Algorithm

Algorithm: Learning Module Network (LeMoNe)

Stage1: - two-way clustering of genes and samples by Gibbs sampling

- tight clusters

Stage2: - integration of several heterogeneous regulators

- inferring a prioritized list of potential regulators for each cluster

Learning Network Modules Algorithm

Integration of regulators

Learning Network Modules Algorithm

Inferring a prioritized list of regulators

Fig. An example Module. The upper panel represent the high-scoring regulators. The lower panel represent the module genes. Each column represent a different sample. The hierarchical tree on top of the figure is one of the trees used to assign the regulators.

Module network inferred by the LeMoNe algorithm

Fig. (A) Clusters of co-expressed genes have diamond shapes, while regulators are symbolized by circles.(B) Zoom on the module network representation.

Assessment of analysis performance

- simulation studies
- 'story building': validation of results for individual miRNA – target pairs
- relation to functional annotation (e.g., GeneOntology)
- comparison with independent miRNA-target predictions (e.g., from sequence based analysis)

Sample size performance

- Evaluation by
 - enrichment of miRNAs known to be associated with Glioblastoma (Ruepp et al., Genome Biology, 2010)

- enrichment of predicted miRNA targets

(Kozomara et al., NAR, 2011)

- Enrichment significance by
 - Fisher's exact test

Data

Dataset	No. of expression	No. of Patient		
	Genes	miRNAs	Samples	
Glioblastoma	11925	524	232	
Ovarian Cancer	17618	799	232	

Significance of Enrichment of known Glioblastoma associated miRNAs

Significance of Enrichment of known Glioblastoma associated miRNAs

Summary

- De novo detection method finds meaningful interactions between miRNAs and mRNAs
- Two approaches were applied for assessment
 - based on known glioblastoma associated miRNAs
 - comparison to sequence based target predictions
- Sub-sampling performed on two different datasets indicate that below a certain sample size the algorithm becomes insufficiently sensitive

Outlook

- Compare power of alternative approaches for different sample sizes
- Test the effect of sample size also on datasets where sample-to-sample variation is smaller
- Investigate alternative functional annotations

Acknowledgement

Paweł P. Łabaj

Alexandra Posekany

The role of modules

Joyce et al., Nature Reviews Molecular Cell Biology 7, 2006

Fraction of annotated miRNA detection methods in PhenomiR

Differences between disease-associated microRNA expression in patients and cell lines!

Learning Network Modules Algorithm

Stage 1

• Grouping of genes and conditions based on Gibb's sampling

Stage 2

- Regulators assigned to co-expression cluster by logistic regression
- A prioritized list of regulators is obtained for each cluster

Choice of method

- Sequence information alone
- joint analysis of gene expression profiles and sequence information (*Cheng et al., Plos one, 2008*)
- de novo detection of potential interactions (Bonnet et al., Bioinformatics, 2010)

Results

Results

