Whole exome resequencing reveals an unexpected amount of variability with possible functional consequences in human miRNAs

Javier Santoyo-Lopez

Andalusian Human Genome Sequencing Centre (CASEGH) Seville, Spain

&

Department of Bioinformatics and Genomics, Prince Felipe Research Centre (CIPF), Valencia, Spain

> http://www.medicalgenomeproject.es Http://bioinfo.cipf.es

M 🔰 🗡 '

CAMDA, Vienna - July 15th, 2011 *ciberer*

- 📕 🕨 🕷 🖉 y

CASEGH, Jan 2010

Medical Genome

CASEGH, October 2010

nom

CASEGH, October 2010

The Medical Genome Project

The Pursuit of Better and more Efficient Healthcare as well as Clinical Innovation through Genetic and Genomic Research

Public-Private partnership

✓Autonomous Government of Andalusia

✓ Spanish Ministry of Innovation

✓ Pharma and Biotech Companies

- Identify novel genes responsible for monogenic diseases
- Use the results of genetic research to discover new drugs acting on new targets (new genes associated with human disease pathways)
- Identify susceptibility genes for common diseases

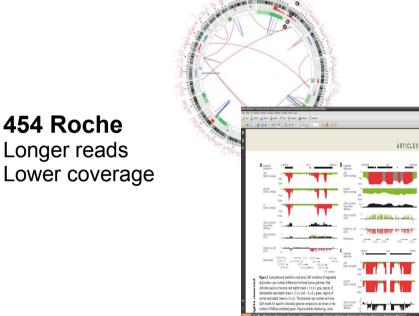
- To sequence the genomes of clinically well characterized patients with potential mutations in novel genes.
- To generate and validate a database of genomes of phenotyped control individuals.
- To develop innovative bioinformatics tools for the detection and characterisation of mutations using genomic information.

New high throughput sequencing technologies will enable researchers to study human diseases, accounting for genetic variability of individual patients and the heterogeneity of their diseases. **However, a major limitation remains the ability to link clinical information to high quality sample collection**.

UPDATED AND COMPREHENSIVE PHR LINKED TO SI Currently14,000 Phenotyped DNA Samples from patients and control individuals.

Prospective Healthcare: linking research & genomic information to patient health record

Patient health & sample record real time automatic update and comprehensive data mining system


Hospitales Universitarios Virgen del Rocío

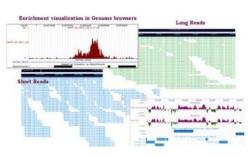
Estación Clínica (SIDCA) /Clinical Work Station From Information Management to Clinical Knowledge Management

> SIDCA Bio e-Bank Andalusian DNA Bank

Two Technologies to scan for variations

Structural variation

·Amplifications **·**Deletions **·**CNV ·Inversions ·Translocations



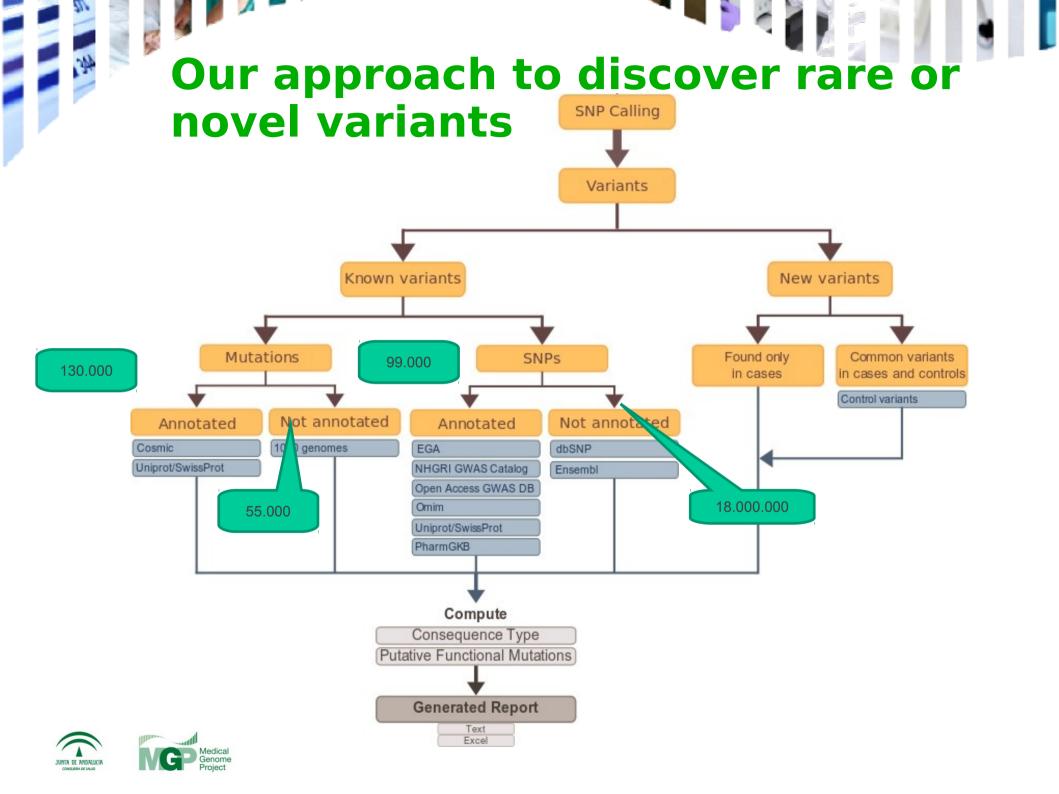
SOLID ABI Shorter reads Higher coverage

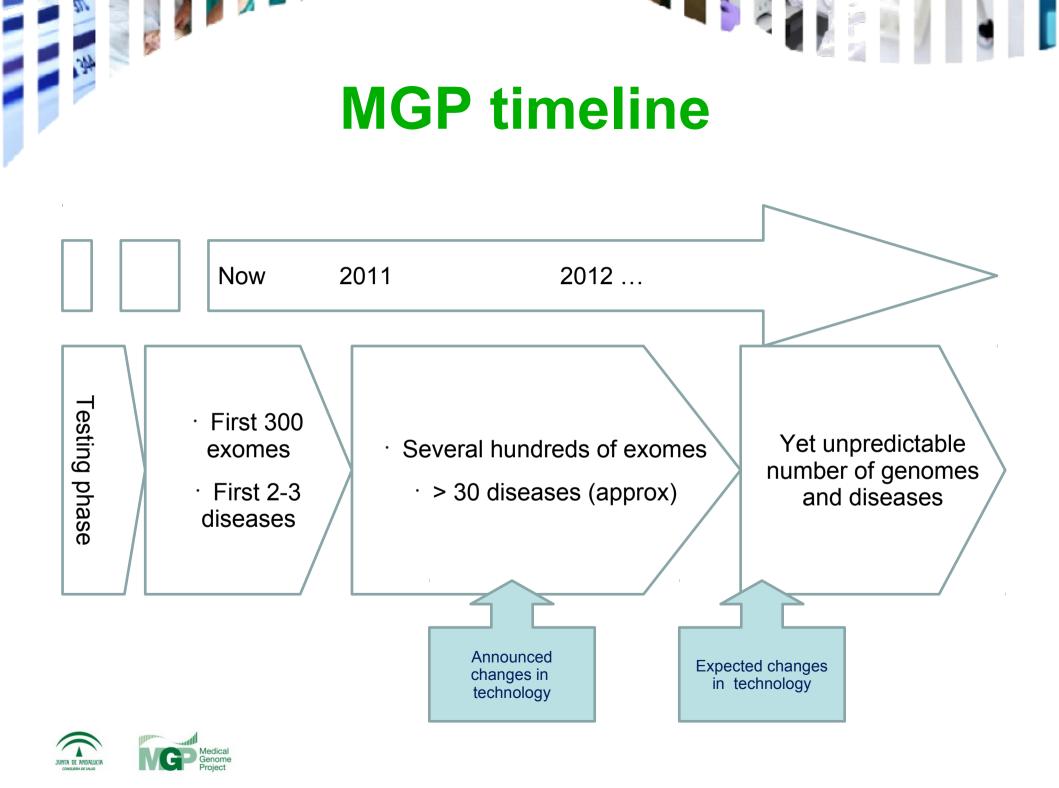
454 Roche

Longer reads

Variants

·SNPs **·**Mutations ·indels



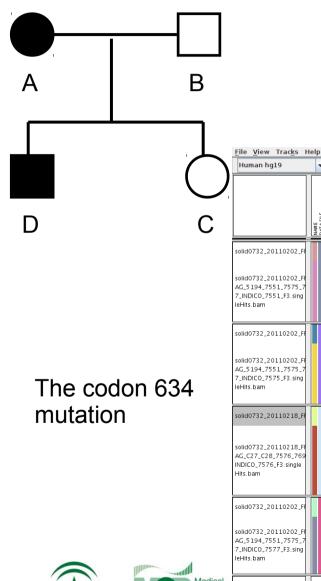

Bioinformatics analysis pipeline

	Automatic QC	Structural variation	n detection		
	Preprocess				Structural
	Position / quality				variation
FastQ 1Mreads	Base composition				
	Length statistics	Mapping	SNP Calling	Annotation	
	Nucleotide QC		SAM to BAM Sort BAM	Annotation	
	Sequence cleansing		Clean BAM Index BAM		
					Variation
					Variation
FastQ Color space					
200Mreads	4-6 hours*	1-2 days* 1	L-2 days* min	utes	>
L					

* 8CPUs 200Mreads (>25-30 Exomes per week)

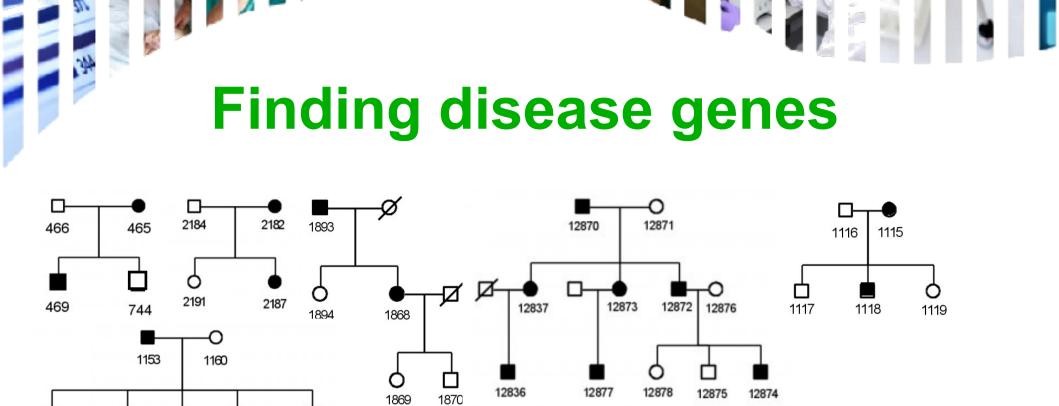
Sequenced Exomes

The MGP's goal is to characterize a great number of genetic diseases by means of exome sequencing from affected individuals


- So far using NimbleGen as exome capture platform we have sequenced using SOLiD 4:
 - 163 exomes corresponding to:

🌒 📕 🎽 `

- 16 samples from individuals with known mutation (FQ, MTC and RPAD) in order to validate the sequencing platform and the bioinformatics analysis pipeline
- 27 samples from 24 phenotyped healthy controls.
- 120 samples corresponding to healthy and affected individuals from families that have a disease in study (RP, FQ, HSCR, MTC)
- Reaching production of 24 exomes (60x coverage) per week.



An example with MTC

Dominant: Heterozygotic in A and D Homozygotic reference allele in B and C Homozygotic reference allele in controls

	Families					
	1	2	3	4	5	6
Variants	3403	82	4	0	0	0
Genes	2560	331	35	8	1	0

Problem: how to prioritize putative candidate genes

enom

Г

Real coverage and Sequencing Sequencing

Enrichment +Sequence run: ~2 weeks 500,000,000 sequences 25,000,000,000 bases Short 50bp (SOLiD) sequences

File size per exome: 300 GB

<u>Coverage</u>

SeqCap EZ Human Exome Library v2.0

Total of ~30,000 coding genes (theoretically)

~300,000 exons;

36.5 Mb are targeted by the design (2.1 million long oligo probes).

Real coverage:

Ensembl Coding genes included: 18,897

miRNAs

Ensembl Coding genes not captured: 3,865

720

Genes of the genome with coverage >10x: **85%**

SOLiD 4 exome statistics

			Mean	nt with	nt with	nt with	nt with
Samples	Total Reads	Maped Reads	Coverage	Cov >=5	Cov >=10	Cov >=20	<u>Cov</u> >=40
3358	75571883	56,173,120 (74.33%)	50.08x	94,07%	88,84%	80,88%	68,60%
3361	56619558	43.472.037 (76.78%)	38.26x	92.82%	85.82%	75.26%	59.89%
3406	57939709	44,519,498 (76.84%)	38.80x	93,67%	87,43%	77,45%	62,08%
3411	63498579	44,277,476 (69.73%)	39.47x	93,69%	87,12%	76,66%	61,28%
4217	96865353	69,694,453 (71.95%)	60.06x	93,96%	89,09%	82,12%	71,81%
4218	101472493	69,820,897 (68.81%)	60.60x	94,66%	90,05%	83,14%	72,62%
4219	100752849	70,563,596 (70.04%)	60.95x	94,83%	90,19%	83,22%	72,71%
5296	102205294	67,274,569 (65.82%)	59.40x	94,66%	89,78%	82,40%	71,44%
5298	105902896	71,944,512 (67.93%)	65.29x	93,74%	88,46%	81,04%	70,64%
5299	102501588	73,434,877 (71.64%)	64.12x	94,34%	89,86%	83,34%	73,56%
4236	109184670	74,065,922 (67.84%)	64.56x	95,18%	91,08%	84,80%	75,04%
4239	112120064	68,945,106 (61.49%)	58.19x	94,77%	89,83%	82,24%	71,01%
6504	110840136	84,762,604 (76.47%)	74.29x	94,38%	89,96%	83,94%	75,23%
6528	103305803	75,286,220 (72.88%)	56.55x	94,53%	88,95%	80,68%	68,64%
4027	115809124	88,168,970 (76.13%)	81.93x	95.29%	91,39%	85,76%	77.40%
4026	110460098	81,873,428 (74.12%)	70.89x	94,75%	90,12%	83,40%	73,69%
4240	112919072	55,238,102 (48.92%)	42.49x	92,76%	85,74%	75,31%	60,41%
4255	106567735	75,712,011 (71.05%)	68.73x	94,97%	90,78%	84,49%	75,00%
4257	107735341	76,750,847 (71.24%)	63.68x	95,30%	91,03%	84,45%	74,32%
4258	113964751	77,335,536 (67.86%)	66.20x	95,01%	90,44%	83,55%	73,49%

And this is what we get from the variant calling pipeline

Coverage > 50x Variants (SNV): 60.000 – 80.000 Variants (indels): 600-1000 100 known variants associated to disease

								1
none	1	2116429	C	missense	0	PRKCZ,LOC1	9	
none	1	2116429	C	missense	0	PRKCZ,LOC1		Know
none	1	2116429	C	missense	0	PRKCZ,LOC1	10	KHO
none	1	2116429	C	utr-3	0	PRKCZ,LOC1	11	
none	1	2318893	C	missense	0	MORN1	12	
none	1	2452167	C	missense	0	PANK4		
dbSNP_1000Genomes	1	2452569	т	coding-synonymous	2985862	PANK4	13	Hit
none	1	3680294	A	missense	0	CCDC27	14	8
none	1	3745852	Т	missense	0	KIAA0562		7
none	1	3746432	G	missense	0	KIAA0562	15	
dbSNP_1000Genomes	1	3755675	Т	coding-synonymous	1891941	KIAA0562	16	6
none	1	6029181	G	missense	0	NPHP4	17	5
none	1	6101899	A	missense	0	KCNAB2		
none	1	6101899	A	intron	0	KCNAB2	18	4
none	1	6132842	C	coding-synonymous	0	KCNAB2		
none	1	6132842	C	coding-synonymous	0	KCNAB2	10	3
none	1	6535559	Т	missense	0	PLEKHG5	19	
none	1	6535559	Т	missense	0	PLEKHG5	20	3
none	1	6535559	Т	missense	0	PLEKHG5	21	3
none	1	6535559	Т	missense	0	PLEKHG5		
none	1	6535559	Т	missense	0	PLEKHG5	22	3
none	1	6647590	A	missense	0	ZBTB48	23	2
none	1	6694129	Т	missense	0	THAP3	24	2
none	1	6695719	Т	utr-3	0	DNAJC11	24	
none	1	6704720	C	missense	0	DNAJC11	25	2
none	1	6711636	C	coding-synonymous	0	DNAJC11	26	2
dbSNP_1000Genomes	1	7889941	C	coding-synonymous	2640908	PER3	20	~
dbSNP_1000Genomes	1	7890117	Т	missense	2640909	PER3		
dbSNP_1000Genomes	1	8425900	Т	coding-synonymous	3753275	RERE	27	2
dbSNP_1000Genomes	1	8425900	Т	utr-5	3753275	RERE		_
dbSNP_1000Genomes	1	8425900	Т	coding-synonymous	3753275	RERE		
none	1	9086361	C	missense	0	SLC2A7	28	2
none	1	9117600	A	missense	0	SLC2A5		1000
none	1	9117600	A	missense	0	SLC2A5		~
none	1	9129619	C	utr-5	0	SLC2A5	29	2
none	1	9129619	C	utr-5	0	SLC2A5		
none	1	9770594	C	coding-synonymous	0	PIK3CD		2
nono	1	10049459	۸	missonaa	0	NIMINAT'I	30	4
		litter					31	2
	h.							-

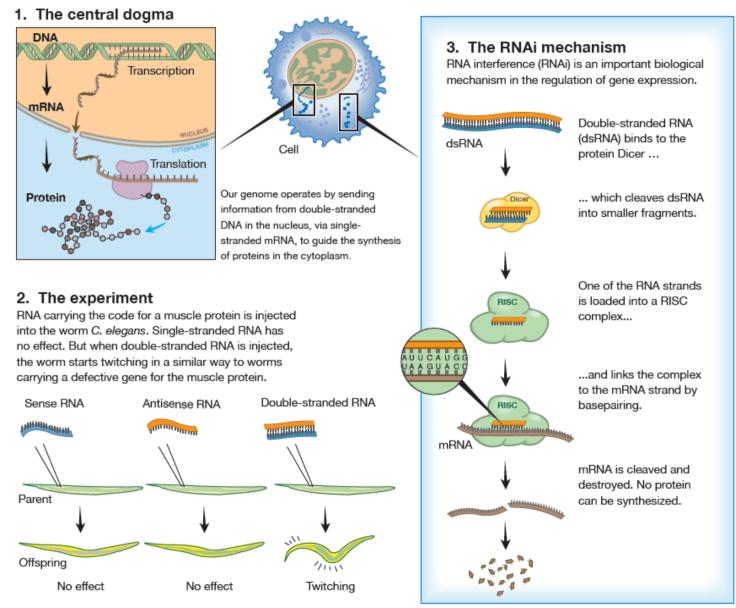
2				
a Hit	s Description			
4 8	Amyotrophic Lateral Sclerosis (ALS)			
5 7	Parkinson's disease			
6 6	Rheumatoid Arthritis			
7 5	common polymorphism			
8 4	Multiple complex diseases-Crohn's disease, combined control			
	dataset			
9 3	Alzheimer's Disease			
0 3	LDL cholesterol			
1 3	Skin pigmentation			
2 3	Type 1 diabetes			
3 2	Coronary Artery Disease			
4 2	in allele DQB1*0501 and allele DQB1*0502			
5 2	Multiple complex diseases-Bipolar disorder			
6 2	Multiple complex diseases-Coronary Artery Disease, gender			
1	differentiated			
7 2	Multiple complex diseases-Crohn's disease, combined control dataset, gender differentiated			
8 2	Multiple complex diseases-Type I Diabetes, combined control dataset			
9 2	Multiple complex diseases-Type II Diabetes Mellitus, combined control dataset			
0 2	Systemic Lupus Erythematosus (SLE), gender differentiated			
3	in women			
1 2	Triglycerides			
2 2	Type I Diabetes			
3 1	893Ser-expressing (ABCB1:2677G>T (Ala893Ser)) cells showed			

47% lower intracellular digo...

Exome sequencing holds much more potential information

More than 30 millions of bases are interrogated with the exome capture systems and typically only one of these bases is useful. The rest of the information is overlooked in many places but....

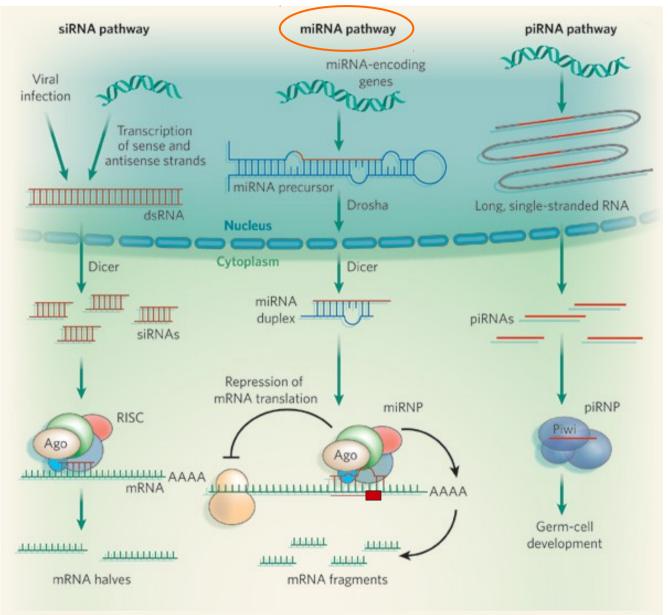
... we can re-analyse it looking to other functional elements:


 An enormous amount of data can be used for different population, evolutionary, functional and many other types of studies.

miRNAs

• They are included in targeted exome re-sequencing

RNA interference



Genom

© The Nobel Committee for Physiology or Medicine Illustration: Annika Röhl

RNA interference types

1

Medical Genome

Project

Molecular biology: The expanding world of small RNAs. (2008) Helge Gro hans & Witold Filipowicz. Nature 451, 414-416

miRNAi - Features

- Bind mRNA 3'UTR
- Seed region (2-8 nt) complementarity, incomplete complementarity the remaining

* 🔍 🖉 🦉 🚺 👔

- Promote repression of protein translation
- 21-24 nt

🍯 📕 🎽 🍾

miRNAi - Functions in the cell

- Development regulation
- Tissue identity
- Neuronal plasticity...

• Many studies on miRNA expression levels

miRNAs have been related to different diseases

miRNAs are thought to be highly conserved

regions of the genome

Variations in the protein coding genes in the human genome

Variants predicted to severely affect the function of human protein coding genes known as loss-of-function (LOF) variants were thought:

- _ To have a potential deleterious effect
- $_$ To be associated to severe mendelian disease

The 1000 genomes project has revealed an enormous amount of variation a the genome level, much higher than expected

- An unexpectedly large number of LOF variants have been found in the genomes of apparently healthy individuals
 - A conservative estimation suggests 100 LOF variants per genome including more than 30 in a homozygous state

Previously unnoticed level of variation with putative functional consequences in protein coding regions in humans.

miRNAs are thought to be highly conserved regions of the genome

 Some studies suggest that most of the mutations are expected to have adverse effects in the functionality or biogenesis of miRNAs

ʻ 👅 🕽 🕷 🚺 I

- Early studies on variability using SNPs reported a very low level of varitation
 - Absence of polymorphims in more than 90% of human premiRNAs and most of them were no in the seed region
 - Strong selective constraint

To date dbSNP reports 519 variants in miRNAs

miRNA exome data analysis and study of miRNA variability

Preliminary study for sequencing data corresponding to 23 exomes from the Medical Genome project

The aim was to survey the actual level of variability at these genomic elements an to check if:

– A restrictive scenario for miRNA variants was confirmed

or

 A situation similar to the occurrence of LOF variants in protein coding genes existed for the miRNAs

Pilot study of variability in miRNAs in control population

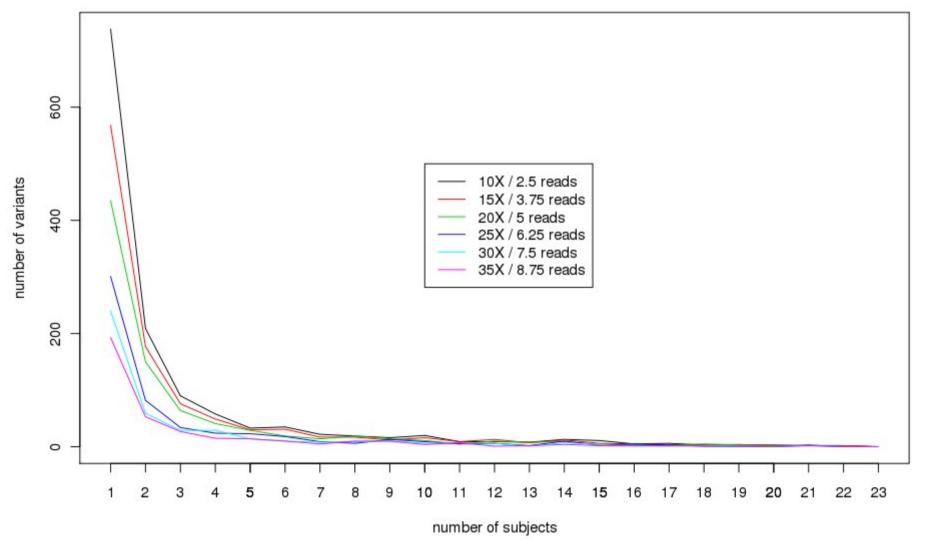
The analysis of the information available on 23 exomes from healthy southern Spain population has uncovered an unexpected amount of variability in microRNAs.

558 variants in total were found in 291 different miRNAs

- 131 of these miRNAs are known to be involved in almost 200 diseases according the human miRNA Disease database.

487 of the variants (87%) were described for the first time in this study.
This figure almost doubles the number of known variants (519) in miRNAs and constitutes a remarkably high ratio of discovery.

The average number of SNVs per individual affecting to miRNAs was 118

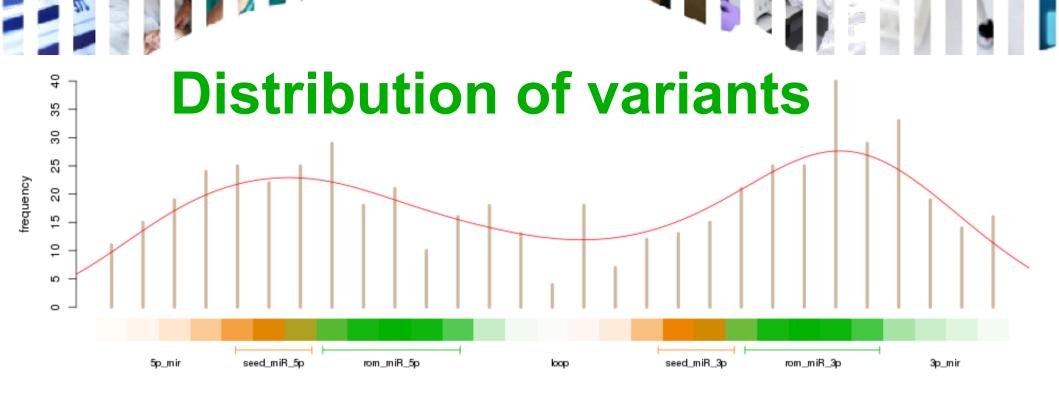

A 1

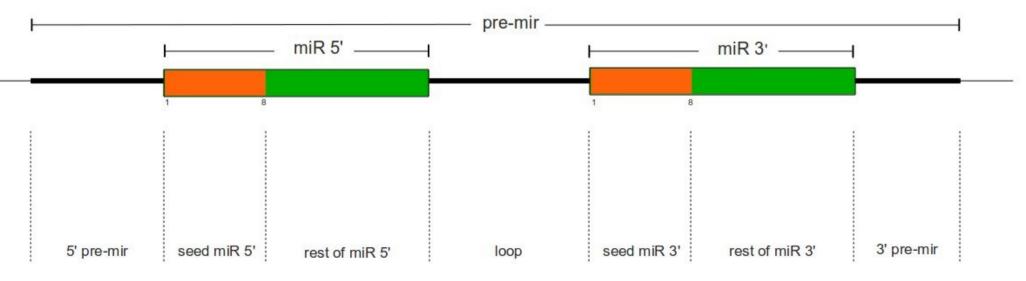
miRNA variant calling in exomas

- Exome capture system used contains 720 miRNAs
- Only high quality sequence reads with unique mapping positions to the reference human genome were used for calling variants.
- Average coverage observed in these regions was 40x and a minimum of 25x is needed to call a variant
- 30% of the reads have to contain the change to call the variation

Number of individuals supporting new variants found

Distribution of variants among the different miRNAs is not uniform.


Most of them were affected by only one SNV

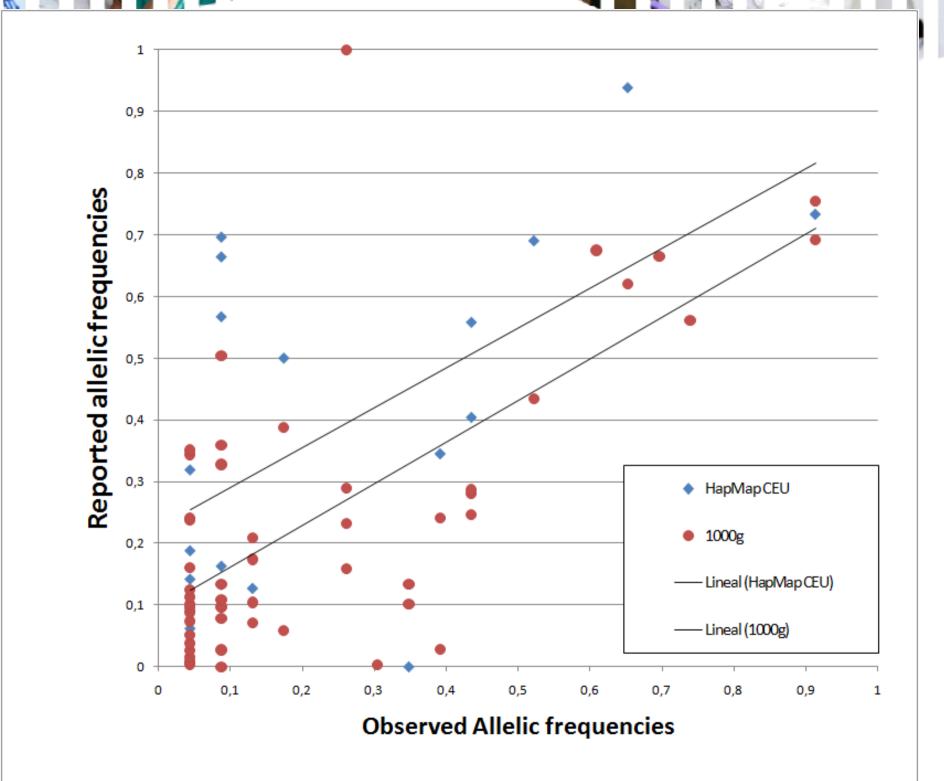

A few mature miRNAs have more variations

 One miRNA contains 6 variant positions in the mature miRNA and 4 variant positions have been found in another 3 miRNAs.

Variants were not homogeneously distributed across the structure of the pre-miRNA.

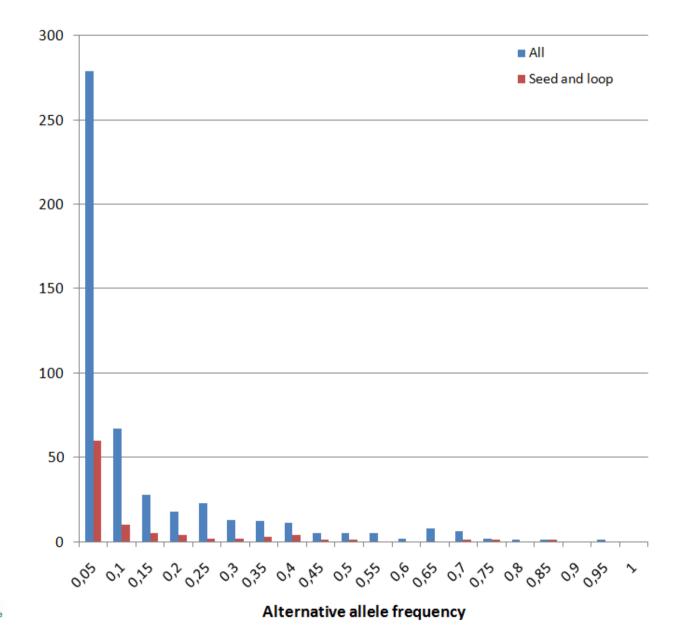
Medical Genome

Project


Population frequencies

Conclusions based on frequencies estimated from a population with this small sample size must be taken with caution

 However when the allelic frequencies in the studied sample are compared to the corresponding ones reported both in dbSNP or the 1000 genomes project. There is a correlation among them


Many of the newly discovered variants occurred in only one individual and consequently they are at no very high frequency

 However there are still a considerable number of variants that appear at higher frequencies.

JUNTA

Alternative allele frequencies

Pathogenic effect of variants

Most of the variants found in the studied samples (98.7%) were in heterozygosis.

- A small number of them displayed the alternative allele in homozygosis
 - None of them seem to be a rare variant according to the estimated population frequencies
 - Deviations of the Hardy-Weinberg equilibrium (HWE) show that this variants are under negative selection (pathogenic). This fact would also suggest that the role of miRNAs in disease could be bigger that previously suspected.

Disease-miRNA associations

Disease

miRNAs pre-mir ids

	Discuse	π minim	
			hsa-mir-10b,hsa-mir-204,hsa-mir-296,hsa-mir-300,hsa-mir-
	Heart Failure	6	340,hsa-mir-381
	Breast Neoplasms	4	hsa-mir-10b,hsa-mir-204,hsa-mir-296,hsa-mir-340
	Adenocarcinoma	3	hsa-mir-106a,hsa-mir-10b,hsa-mir-204
	Melanoma	3	hsa-mir-216a,hsa-mir-217,hsa-mir-296
	Neoplasms	3	hsa-mir-106a,hsa-mir-10b,hsa-mir-204
	Pancreatic Neoplasms	3	hsa-mir-106a,hsa-mir-204,hsa-mir-217
	Adenoviridae Infections	2	hsa-mir-1274b,hsa-mir-627
	Autistic Disorder	2	hsa-mir-106a,hsa-mir-381
	Carcinoma, Squamous Cell	2	hsa-mir-10b,hsa-mir-296
	Hepatitis C	2	hsa-mir-296,hsa-mir-448
	Leukemia, Lymphocytic, Chronic, B-Cell	2	hsa-mir-16-2,hsa-mir-640
	Lung Neoplasms	2	hsa-mir-106a,hsa-mir-216a
	Lupus Vulgaris	2	hsa-mir-296,hsa-mir-557
	Prostatic Neoplasms	2	hsa-mir-106a,hsa-mir-296
	Stomach Neoplasms	2	hsa-mir-106a,hsa-mir-340
	Astrocytoma	1	hsa-mir-106a
	Atherosclerosis	1	hsa-mir-296
	Carcinoma	1	hsa-mir-10b
	Carcinoma, Hepatocellular	1	hsa-mir-106a
	Carcinoma, Non-Small-Cell Lung	1	hsa-mir-16-2
	Colonic Neoplasms	1	hsa-mir-106a
	Colorectal Neoplasms	1	hsa-mir-492
	Endometrial Neoplasms	1	hsa-mir-204
	Glioma	1	hsa-mir-106a
	Head and Neck Neoplasms	1	hsa-mir-204
	Hepatoblastoma	1	hsa-mir-492
	Hypertension	1	hsa-mir-204
	Liver Neoplasms	1	hsa-mir-10b
	Medulloblastoma	1	hsa-mir-10b
	Mesothelioma	1	hsa-mir-106a
	Muscular Disorders, Atrophic	1	hsa-mir-381
	Myocardial Infarction	1	hsa-mir-10b
	Nasopharyngeal Neoplasms	1	hsa-mir-10b
	Neuroblastoma	1	hsa-mir-10b
	Ovarian Neoplasms	1	hsa-mir-296
	Patau Syndrome	1	hsa-mir-16-2
	Retinal Degeneration	1	hsa-mir-204
cal	Retinal Neovascularization	1	hsa-mir-106a
	Toxoplasmosis	1	hsa-mir-106a
	Urinary Bladder Neoplasms	1	hsa-mir-300

CASEGH

Genomics

Dr. Rosario Fernández Godino Dr. Alicia Vela Boza Dr. Sandra Pérez Buira María Sánchez León Javier Escalante Martín Ana Isabel López Pérez Beatriz Fuente Bermúdez

Bioinformatics

Daniel Navarro Gómez Pablo Arce García Juan Miguel Cruz

HOSPITAL UNIVERSITARIO VIRGEN DEL ROCÍO

Dr. Macarena Ruiz Ferrer

Nerea Matamala Zamarro

Prof. Guillermo Antiñolo Gil

Director de la UGC de Genética, Reproducción y Medicina Fetal Director del Plan de Genética de Andalucía

CABIMER *Director de CABIMER y del Departamento de Terapia Celular y Medicina Regenerativa*

Prof. Shom Shanker Bhattacharya,

CENTRO DE INVESTIGACIÓN PRÍNCIPE FELIPE

Responsable de la Unidad de Bioinformática y Genómica y

Director científico asociado para Bioinformática del Plan de

Genética de Andalucía

Dr. Joaquín Dopazo

Dr. Javier Santoyo (CASEGH's Scientific Coordinator)

José Carbonell

The Bioinformatics and Genomics Department at the Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain PRINCIPE FELIPE CENTRO DE INVESTIGACION The INB, National Institute of Bioinformatics (Functional Genomics Node) × INB cïberer **The CIBERER Network of Centers for Rare Diseases ProyectoDeméter**

F.E.D.E.R.