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Motivation

massive data

SNP

NGSequencing

MassSpectrometry

Expr.Microarray

statistics

� massive problems

Extract biological meaning



The ‚classical‘ approach
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Sorting the data
(no compression):
1 gene = 1 point

2way hierarchical clustering ‚heatmaps‘

genes

Samples/ patients ….



An old problem
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20 districts
of Paris

Features: national origin/ age/ profession/ social classes etc…

Color scale:
White: low
Yellow: medium-low
Blue: medium-high
Red: high

Montmartre

Industric



5

features

Samples (individuals)

‚portrait‘ - vectors

OMICs portraits
‚see the molecular faces‘
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High throughput
data
(e.g. OMICs)

features

Samples (individuals)

OMICs portraits
‚see the molecular faces‘
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The  intermediate view: portraying the omic-faces

detailed gene
centered
view

Coarse sample 
centered
view

Intermediate: portraying high-
dimensional Omics data

Requirements:

- visual idendity for each sample 
- data compression… 
- …without loss of information 
- expressing intrinsic features 
of biological impact…
- … which can be treated as new, 
complex objects for next level 
analysis…
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Sorting maschine

Data (letters)

Transformed data
(boxes, towns)

sorting
compression

v
a
lu
e
s

individuals/conditions

Cluster of similar
behaving features

To Vienna
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Sorting maschine

Data (letters)

Transformed data
(boxes, towns)

sorting
compression

To Leipzig
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Sorting maschine

Data (letters)

Transformed data
(boxes, towns)

sorting
compression

To LeipzigTo Vienna To Izmir

To Honolulu
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SOM machine learning: the sorting machine

Data (genes)

Transformed data
(metagenes)

sorting
compression
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Outline

1. Explain what SOM does !

2. How SOM can help to understand massive OMICs data

Examples (array expression data):

a) Human tissues
Well classified, diverse expression � teaching example

b) B-cell Lymphoma
Just another cancer � molecular cancer subtypes

c) Glioma Multiform
Its the CAMDA-‚must!‘ data set?
(we started after May 15th 2011)
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Worked example: SOM atlas of human tissues

- heterogeneous expression
- well defined samples

67 human tissues (Affy array data)
9 categories

SOM 
machine

portraits

Down 
stream
analysis
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Worked example: SOM atlas of human tissues

- heterogeneous expression
- well defined samples

67 human tissues
9 categories
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Imaging of information

Image � pixels � information
(brigthness, colour)

~60x60 pixels ~2000x1000 pixels
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SOM image: clustering

60x60 pixels

tissues/samples

Metagene and
single genes
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SOM image: clustering

60x60 pixels

tissues/samples

Metagene and
single genes
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SOM image: clustering

Portrait: 
distribution of all metagene expressions
in one sample

Receiving post offices
(letters come-in from Leipzig, Izmir…)

Metagene profile: distribution of one metagene in all samples

Sending post offices
(letters go-out to Leipzig, Novosibirsk…)
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SOM image: clustering

Portrait: 
distribution of all metagene expressions
in one sample

Metagene profile: distribution of one metagene in all samples
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Profiling map: spots

Nervous tissues

Immune system
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Profiling map: spots

Nervous tissues

Immune system
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SOM image: clustering

Data (genes)

Transformed data
(metagenes)

sorting
compression

Pixels/ tiles

Aggregated data
(modules)spots
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SOM image: spot clusters

Pixels/ tiles

spots

22,000 genes

60x60=3,600 
metagenes

<20 modules

supervised

un-supervised
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SOM: decomposition into parts

- heterogeneous expression
- well defined samples

67 human tissues
9 categories

?
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Spot summary

Overexpression summary map



Expression landscape of human tissues
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Nervous system

Immune system

Muscle

Adipose tissue
epithelium

Liver

Testis

Pituatary gland



SOM: Feature map
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Nervous system

Immune system

Muscle

Adipose tissue
epithelium

Liver

Testis

Pituatary gland
Tissues
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GO-Gene set overrepresentation in the metagene spots

1500 gene sets tested (http://www.broadinstitute.org/gsea/i



30

Similarities between the tissues: 2nd level SOM

nervous system

immune system

diverse tissue



Tissue map
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Immune system

Muscle

Adipose tissue
epithelium

Liver

Testis

Pituatary gland

Nervous system



Zoom in: nervous tissues
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…train a new SOM with a subset of tissues (e.g. nervous tissues)



Map of nervous tissues
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cerebellum

hippocampus

hypothalamus

Cortex cerebriglobus pallidius

telencephalon

Corpus callosum, spinal cord
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Zoom-in: Landscaping using 2nd level SOM

Zoom-in: subsets of all tissues

Mesencephalon
Diencephalon
Rhombencephalon

Telencephalon

Cortex cerebri
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Metagene-vs-single gene analysis: filtering

FC-1000

FC-3600

FC-100

FC-3600

100%

28%

2.8%

16%

5%

0.5%
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F-score:
Inter – to – intra cluster ratio of distances

Metagene-vs-single genes: MG provide more compact cluster
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Metagene-vs-single gene analysis: clusters are more compact

…because metagenes are representative and less noisy
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Metagene-vs-single genes: MGs are more representative

FC-3600          FC-1000     FC-100
%genes from
nervous tissues

FC-3600          FC-1000     FC-100

…because metagenes down-weight redundant information
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Metagene-vs-single genes: MGs provide better resolution

FC-3600          FC-1000     FC-100
%cluster size of
immune system tissues

FC-3600          FC-1000     FC-100
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Metagene-vs-single genes: MG provide better correlations

Inter-
category

Intra-
category

Only-
nervous
t.

…because metagenes are less noisy
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Comparison of clustering methods: SOM identifies class-related features

…because SOM uses distance similarity AND flexible projection
into visualization space
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SOM: Basal properties

1. Portrays each sample
2. Dimension reduction (meta-features, prototypes) 
without loss of information (all single features
are still present in the clusters)

3.Highly intuitive (spot pattern)
4.Interpretable (concepts of function, GSEA)
5.Scalable (zoom-in)
6.Gene centered analysis (GSEA)
7.Sample centered analysis (similarity analysis)
8. Metagenes are usually better than single genes: 
more representative and less noisy



Starting point: DLBCL -subtypes
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44 samples

48 samples

117 samples

Different ‘molecular’ diseases 
of Diffuse large B-cell
lymphoma (DLBCL)

molecular
Burkitt‘s
lymphoma
(mBL)

Non-molecular
BL (n-mBL)

Lymphoma



Disentangling lymphoma subtypes
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Different ‘molecular’ diseases

molecular Burkitt‘s lymphoma (mBL)

Diffuse large B-cell lymphoma
(DLBCL)

Intermediate

Non-molecular BL: n-mBL

4
4
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m
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s

4
8
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m
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le
s

1
1
7
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a
m
p
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s

Log FC scale



Supporting maps : Profiling map
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mBL-up

mBL-down
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1st- and 2nd order changes

mBL

non -mBL

intermediate



48GS overrepresentation ~ 1,450 GO-sets are tested

mBL-up

mBL-down

immune response
stroma B cell signaling

protein binding
nucleus
cytosol

stroma

keratinization
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mBL-up

mBL-down

K

B D CA

QRO

V
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Go-geneset maps

mBL-downmBL-up

189 genes
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Go-geneset maps



Similarity relations : 2nd level SOM
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mBL n-mBL

inter



The problem is virtually one-dimensional

53Lymphoma subtypes

?

Prostate cancer
progression



Korrelation networks
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Maximum spanning tree:
Connects strongest pairwise
correlations

Correlation net:
Connects all samples mutually
correlated with r>0.5



Correlation networks
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Maximum spanning tree:
Connects strongest pairwise
correlations

Correlation net:
Connects all samples mutually
correlated with r>0.5

MPI-002

MPI-090
mBL

n-mBL

inter

mBL

n-mBL

inter



Detecting and analyzing ‚contaminations‘
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Contamination:
Endothel
Keratin
� Healthy lymph node tissue

spot analysis

Contamination:
C-reactive protein
Albumin
Complement activation
Acute phase response

spot analysis
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SOM and cancer

1. Spot characteristics of cancer subtypes
2. Similarity analysis: relations between subtypes
3. Individual portraits of the samples
4. Outlier-/ healty tissue- identification
5. GSEA: Assignment of biological
processes/components associated with dysfunctions



Starting point: GMF subtypes
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Glioblastoma

MF

Different ‘molecular’ diseases



� Affy-Level 1 expression data (*.cel-files)

� Hook preprocessing + Quantile normalization

� Quality control � 153 samples

� Separate story

� Class labels of the paper

�Original classification:

� Larger data set

� RMA preprocessing
59



Disentangling GMF subtypes
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Mesenchymal

Proneural

Classical

Neural



Supporting maps : Profiling map
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Mes-up

Nr-up
(+PN-up)

PNr-up
(+Nr-up)

Cl-up
(+PNr-up)
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1st- and 2nd order changes

ProNr

Mesench .
Neur.

Class.



Pairwise correlation map of the portrays
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sorted

Mes PNr Class. Nr.

+-

+ -

-

-
+

+

-

-
-



Pairwise correlation map
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HClustered

MesPNr
Class.

Nr.
Class.



2 scales : high expression
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> 700 m NN
Expr.

sampl.

98%-percentile
Log FC scale



2 scales : average expression (log log FC)
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> 0 m NN

FC=1
Log Log FC scale



Disentangling GMF subtypes
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log FC-scale: top expression Log log FC-scale: up-down regulated



Disentangling GMF subtypes
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Log log FC-scale: up-down regulated



Topological measures : GMF
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Characterizing the fuzziness of the expression landscape:

# of red pixels: # of highly expressed metagenes

# of red pixels forming the borderline: 

Compactness: area/ border line

mean expression

High expression



Topological measures : GMF

70

High expression mean expression

fuzziness

Class & Neur. � more fuzzy expression landscape than Mes & PNeur.



Topological measures : Lymphoma
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High expression mean expression



Similarity relations : 2nd level SOM
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Mes

Cl

PNr

Nr



2nd level SOM: GMF
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GMF subtypes

Prostate cancer
progression

Lymphoma subtypes

?



Correlation networks : GMF
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Correlation net:
Connects all samples mutually
correlated with r>0.5

Mes

PNrClass.

Nr.

Maximum spanning tree:
Connects strongest pairwise
correlations

Mes

PNr

Class.

Nr.

Class & Neur. = different intermediate pattern between Mes & PNeur.



Independent component analysis
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Mes

PNr

Class. Nr.

ICA: perpendicular axes � independent sets of features

Orthogonal sets of genes (Class & Neur.) vs (Mes & Pneur)



76

98-percentile: 12 overexpression spots: A…L
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Spot heatmap: co-occurance in different subtypes

Mes PNr Class. Nr.
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Spot-occurance tree

Primary spots

Secondary spots
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Spots in concert

Mes_up

PNr_up

CL_up

Nr_up

primary spots

secondary spots
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Spot analysis

 Biological Process (BP)
 Cellular Component (CC)
 Cellular Process (CP)
 Molecular Function (MF)
 KEGG pathways
 BioCarta (BC)
 Reactome (RC)
 Cancer sets (CS)
 Special

88 (2%)

2392 (49%)

430 (9%)

217 (4%)

186 (4%)

353 (7%)

47 (1%)
208 (4%)

1008 (20%)

# Gene sets: 4986

Overrepresentation:
�set-members in the spot (HG)

Overexpression:
�Expression of the set

GS-Enrichment Z-score:
� Overrepr + -expression
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GeneSet enrichment reports

GO Cellular Component

GO Biol. process

GO molec. funct
KEGG

reactome

biocarta

Cancer sets
GO cell. process
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Functional assignment of spots

Mes_up

PNr_up

CL_up

Nr_up

immune response
inflammation
cancer_DN

cell cycle
cell division
Cancer_UP

Neuron 
dedifferentiation
Antiapotosis
Aging brain_DN

Multiple myeloma
Transcription PolII
Sphingomyelin synt.

Neurotransmitter 
secretion
EGFR_UP
axogenesis
Cancer_DN

Synaptic transmission
Dopamine
Alzheimer_DN
Aging brain_UPRibosome

mitochondrion
methyltransferase

MAPK-cascade
P38-MAPK
Aging brain_UP

PIK3_UP
Common cancer genes
mRNA processing/splicing
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Gene set profiles and Gene set maps

inflammation

Cell division

Neurotransmitter

+ - (-)(+)

- + o (-)

- (+) (-) +

Enriched
in spot:

Mes PNr Cl Nr
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ribosome

(-) o  (-) +

Aging brain_DN

(+) (-)  + +

- +   - +

Aging brain_UP
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Brain diseases

Alzh_UP

(+) (-)  + -

Alzh_DN

- +   - +

- o   (-) +
Parkinson
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Cancer

Soft tissue
tumors
PC1_UP

+ - - o

- +  o  (+)

+ - +  - Liver Carc.

Soft tissue
tumors
PC1_DN
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Pathway activation sets� B-cell Lymphoma

mBL-down

mBL-up
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Pathway activation sets� GMF

mBL-down

mBL-up

PNr_up

Cl_up

Mes_up

Cl_up

myc

ras

e3f3

src
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Cancer sets� B-cell Lymphoma
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Cancer sets� GMF

GSEA identifies a large numbers of signatures (cancer, 
brain diseases) in GMF with subtype-specific occurance
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Subtype-specific gene sets

+ - (-) (-)

- + (-) (+)

(-) - + (-)

(-) (+) - +

Mes_up

PNr_up

CL_up

Nr_up
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Spots in concert

+

-

Mes_up

PNr_up

CL_up

Nr_up
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Chromosome enrichment

Mes_up

PNr_up

CL_p

Probes of spot D

chromosome

+

-

…amplification

…deletion
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Chromosome enrichment

Classical_UP/Nr_DN

…amplification …deletion

Classical_DN/Nr_UP
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Chromosome enrichment

Mes_UP/PNr_DN Mes_DN/PNr_UP
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Preliminary I: Chromosomal abberations

Classical
Amp:� chr. 7
Del: � chr. 9,10

Neural
xxx

Mesenchymal
Del: � chr. 17

Proneural
Amp:� chr. 4, 7
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Preliminary I: Chromosomal abberations

Classical
Ampl:� chr. 7
Del: � chr. 9,10

Neural
xxx
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Preliminary I: Chromosomal abberations

Mesenchymal
Del: � chr. 17

Proneural
Amp:� chr. 4

Preliminary I: Spot-related chromosome-enrichment of
gene activity correlates with CNV 



Preliminary I: miRNA
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Preliminary II: miRNA expression pattern reproduces GMF-
subtypes
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stripes

Preliminary II: confusion about the miRNA data
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SOM and GMF

1. 4 subforms are well identified
2. Assignment of related mol. functions via spot-
enrichment

3. Redundancy with other cancers, brain
dysfunctions

4. Similarity relations: Mes-PNr and Cl-Nr mutually
orthogonal expr. Changes; two ‚paths‘ between
Mes and PNr via Cl. or Nr. 

5. Fuzziness of expression: high for ‚intermediates‘
6. integration of miRNA, CNV in progress



The transcriptome world
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tissues
Cancer, e.g. 
lymphoma
glioblastoma

stem cells
fate decisions
differentiation

intervention
experiments,
toxic effects

mouse
animal models

cell cycle
yeast

obesity,
diseases



The transcriptome world: expression signatures

103

tissue
signatures

stemness
signature

ESC_up
fibro_up

pathway
activations

ras

mycsrc

lymphoma
subtypes

Burkitt

DLBCL

yeast cyle

reductive

oxydative

Glioblastoma
MF subtypes



The transcriptome world: expression signatures
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yeast cyle

reductive

oxydative

Oxidative
phase

Reductive
phase

+ 
0 
min

+ 4 
min

+ 
16 
min

+ 
20 
min

+ 
24 
min

+ 
28 
min

+ 
32 
min

+ 
36 
min

+ 
40 
min

+ 8 
min

+ 
12 
min



The OMIcs universe
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SNPs
mutations

Copy-no

genOMe

mRNA

miRNA
ncRNA

transcriptOMe

DNA-
methyl‘s

histone-
mod‘s

epigenOMe

proteins

metabolites

clinical
phenotypes

proteOMe
metabolOMe

epidemeolOMe



The OMIcs universe
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miRNA
Stemness
array

Prostate cancer
DNA-MethSeq

healty

cancer

differentiation
H3K4/K27
ChipSeq

ESC

MEF

NEP
drosophila species
MALDI-TOF

obesity
targeted
metabolomics

start

excersise

reconvalescent

genotyping
SNP-arrays

Africa

Europe

Asia

America
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Mapping the early human migrations

Human Genotype Atlas
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Genomic and/or molecular phenotypicic portraits

Tissues
Cancer
Evolution

objectives Chip

NGS

MS..

methods

DNA

RNA

Meth

Prot..

‚Omes‘

SOM �
tool for analysis of massive data
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Thank you !

Henry Wirth

Mario Fasold

Lydia Hopp

Edith Willscher

Thanks to


