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Motivation

Sources of -omics data

@ Measurement techniques

o Next generations sequencing
e Mass Spec
o Microarrays

@ Application

o mRNA and miRNA (gene expression profiling/transcriptomics)
o Copy numbers (structural variant determination/genomics)

e SNPs (genotyping/genomics)

o Proteins and Metabolites (proteomics/metabolomics)

@ Aberrations

o Differentially expressed

o Loss and gain of DNA segments, loss of heterozygosity
o SNP frequencies

o Different concentration
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Motivation

Characteristics of -omics data

@ High-dimensional

o # Genes, #miRNAs
e # Loci

o # SNPs

o # Proteins

o Noisy

o Measurement noise
o Cross-hybridization, GC-content bias

Many falsely discovered aberrations or false positives (high FDR)
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Motivation

Problems caused by false discoveries ﬂ

@ FPs are not associated with an experimental condition
while correction for multiple testing must take them into account

o Decreases the study's discovery power
o Decreases the significance of discoveries

@ FPs misguide researchers

Demand for methods with a low false discovery rate at detection of
biological aberrations in -omics data
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Basic concept to reduce the FDR

Latent variable models ﬂ

@ Decompose observation into noise and signal by a generative model

@ Remove noise
= aberration detection in noise-free data
o Decrease dimensionality
= signal variance for filtering (Informative/ Non-Informative calls)
@ Model across samples for each gene, locus, SNP, or protein

@ Use latent variable to represent the gene expression level, DNA copy
number, genotype, or protein concentration
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Basic concept to reduce the FDR

Our latent variable models

Next generations sequencing:
@ cn.MOPS (Copy Number estimation by a Mixture Of PoissonS)
— DNA copy numbers
Microarray:
@ FARMS (Factor Analysis for Robust Microarray Summarization)
— gene expression and miRNA

@ cn.FARMS ( Copy Number estimation by FARMS)
— DNA copy numbers
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FARMS

FARMS: Facts and assumptions <

® Gene measured by BYERUOUL BED S

different probes

@ Goal: summarize probe -DDUDUDBDHD

intensities to an
expression value

@ Noise-free probes are
positively correlated

o Variable probe
qualities

e High quality probes
are linear dependent

@ Replicate probe
intensities are Gaussian
distributed

Higher mRNA concentration — larger intensities
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FARMS

FARMS: The idea
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FARMS

FARMS: The data
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FARMS

FARMS: The model ﬂ

X =ANz+ €

x,A€R" and z~ .4 (0,1), e ~ A4 (0,¥).

Probe intensities: {x} = {x1,...,xn} (log-transformed, standardized)

Hidden factor z represents the gene expression level
@ € accounts for the independent noise in the probes intensities

@ € and z are independent

Model selection: maximize the likelihood <X~JV (7\}\T+‘l’>) with
respect to W and A by an EM algorithm
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FARMS

FARMS: Bayes framework

Posterior

PINY[{x}) o< p({x} | A¥) p(A)
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FARMS

FARMS: Bayes framework

Posterior

PAAY [{x}) o< p({x}|A¥) p(A)

Prior knowledge

@ Positive A ensure positive
probe correlation

@ Most genes show no or
small signal (large signals
are of interest in a study)
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FARMS

FARMS: Bayes framework

Posterior

PAAY [{x}) o< p({x}|A¥) p(A)

Prior knowledge Rectified Gaussian

@ Positive A ensure positive
probe correlation

@ Most genes show no or
small signal (large signals
are of interest in a study)
Aj = max{y;,0} with
i~ A (1A, 0p)
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FARMS

FARMS: EM updates

E-st

i 2N — 12 2]
Ez\x; (zi) = Mz |x; and Ezix; (Zi) = Hzx; + OZi1x;
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FARMS

FARMS: EM updates

E-step:

i 2N — 12 2]
Ez\x; (zi) = Mz |x; and Ezix; (Zi) = Hzx; + OZi1x;

M-step:
N old old\ —
Gauss  _ 1 1 pa Wy 1 Y5
A} = <N;XU Eix (Z/')+N G%\ N;Ez,lx, zf N o
AjGauss Fatp )\jGauss )
Anew ,
0 for AGauss < g

i=1 i=1

yhew = {diagvect( Zxx )} = ?\,"ew{NZEz,Ix, Z:)X:} +
j J

old

vy
1 )\neW(uA _ )\J[‘]EW)

N
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FARMS

FARMS: Filtering by signal variance

S N N
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FARMS

FARMS: z-posterior

Variance of z | x
Model

x =ANz+ €
and Gaussian z-prior .4 (0,1) results in the z-posterior p(z | x):
z|x ~ JV(HZIX) 0-§|X)
—il
W = ()7 WA (1 + A“rlx)

02 = (1 n ATw—lx)fl

z|x
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FARMS

FARMS: The I/NI call

The variance of z is decomposed into a signal and a noise part:

N

1 = var(z Z Z,\X, ,- = NZ(H2,|X, z,\x)

1 Y 1
2 _ 2
NZUZ,-IX,- =1~ NZ“z;Ix,-
i=1 i=1

N

1 —

2 2 Twy—1

2 =1- ) i, = (1+ATw )
i=1

O';X is called the "Informative/Nonlnformative (I/NI) call” and is one
minus the signal variance. We see that large A (going with low noise ¥)
leads to low variance of z | x which means a precise conditional z
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FARMS

FARMS: Independent I/NI calls filtering ﬂ

Independent filtering increases detection
power for high-throughput experiments

Richard Bourgon®, Robert Gentleman®, and Wolfgang Huber'

*European Bioinformatics Institute, Cambridge CB10 15D, United Kingdom; "Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080-4990; and
“European Molecular Biology Laboratory, 69117 Heidelberg, Germany

‘ Edited by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, and approved March 22, 2010 (received for review December 3, 2009)
T

@ For permutation invariant test statistics and for the t-test statistic T
(only for Gaussian z-prior), the 1/NI call filter applied to null
hypotheses is independent of the statistic

@ This guarantees type | error rate control if first filtering by /NI calls,
then using these statistics, and finally applying correction for
multiple testing.

@ http://www.bioinf.jku.at/software/cnfarms/proof_ini.pdf
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FARMS

FARMS: 1/NI calls distribution <

Bimodal distribution
GSE6119

@ Enforced by the parameter
prior

30
|

@ Modes clearly separated
(insensitive for filtering
1 threshold)

@ Works for unbalanced data

denisty
20

1 I\ (few samples contain a signal)
in contrast to variance filtering
R O —— (Bourgon et al. (2010))

@ Works for few genes with a
signal

var(zh)
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FARMS

A pipeline for gene expression analysis

Probe
‘ level data ’ PARMS
_— Medianpolish
Tukey Bi-Weight
Liwong
AverageDiff
Y
Background Normalisation PM correction Summarisation
A\ correction )
RVA e oo P only
MAS 5.0 Y PN-MM
None Constant M
VSN

‘ Expression level

Figure: Probe-level modeling is a mandatory step
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FARMS

Receiver Operator Characteristics (ROC) <

Affycomp Il / GoldenSpike Benchmark (AUC - area under the curve):

INTENSITY FARMS RMA GCRMA MAS 5.0 MBEI
Low 0.94 0.51 0.62 0.07 0.21
MEeD 0.99 091 0.94 0.00 0.43
HGU1

CUis3 HiGH 1.00 064 0.59 0.00 0.16
MEeaN 0.95 0.60 0.69 0.05 0.26

Low 0.91 0.57 0.45 0.09 -

HGUgs5 MEeD 1.00 091 091 0.00 =

HigH 0.98 0.96 0.92 0.00 -

MEeaN 0.93 0.65 0.57 0.06 =
GOLDENSPIKE 0.85 0.76 0.78 0.28 0.39

Computational costs for processing 60 arrays
| FARMS | RMA | MAS50 |  MBE
COMPUTATIONAL TIME [s] ‘ 92 ‘ 384 ‘ 851 ‘ 591
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FARMS

Results 1/NI call

@ Leads on average to 84 (£1.5)% exclusion rate

o Applied on 30 real life studies
o A/P calls excluded only 33 (£1)%

@ Validation was carried out on spiked-in data:

Exclusion rate on spiked-in data sets:

DETECTED DETECTED
INFORMATIVE | NON-INFORMATIVE | EXCLUSION RATE SIS | B STEs s
HGU133A 81 22219 99.63% 42/42 28/28*
HGUgs_V2 56 12570 99.56% 14/14 5/5%*
Hu. GENE 1.0 ST 40 19,753 99.80% 15/15%%* -

*McGee et al. 2006; **Wolfinger and Chu 2002; Cope et al. 2004; ***long spiked-in fragments
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FARMS

I/NI call vs. A/P call

variance across the arrays (log10)

Informative

o 5 10 15

0
expression level (log2)

Figure: Variance and mean of genes selected by A/P calls and I/NI calls.
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cn.FARMS

A pipeline for copy number analysis

<

Integer copy Integer copy P
Probe level data -— S <«——— Raw copy numbers !

number number estimation Py j‘g

. @

GLAD  PennCNV F
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. &
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Sparse overcomplete representation  * Median polish

Figure: Copy number analysis for (Affymetrix) DNA genotyping arrays as a
three-step pipeline: (1) Normalization, (2) Modeling, and (3) Segmentation.
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cn.FARMS

Benchmark data sets

@ 30 male and 30 female CEU founders

o SNP 6.0 and 250K NSP Arrays
o Classification task: distinguish males from females by their copy
number on the X chromosome

@ Evaluation on:

e Single-locus / multi-loci classification (window mode)
e Multi-loci summarization with

e cn.FARMS
@ Median locus for dChip and CRMA_v2
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cn.FARMS

ROC-Curve (250K arrays)

single-locus

True positive rate

" |— cn.FARMS
- - dChip

- CRMAv2
T T T
0.00 0.02 004 0.06 0.08 0.10

0.90 0.92 094 0.96 0.98 1.00

False positive rate

TPR / FPR

True positive rate (TPR) = TP/(TP+FN)
False positive rate (FPR) = FP/(FP+TN)
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cn.FARMS

ROC-Curve (250K arrays)

<
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cn.FARMS

ROC-Curve (SNP 6.0 arrays)

single-locus
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cn.FARMS

ROC-Curve (SNP 6.0 arrays) <

single-locus multi-loci, 3 markers
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cn.FARMS

Results cn.FARMS

AFFYMETRIX MAPPING250K_NSP

AFFYMETRIX SNP 6.0

Loc CRITERIA | cn.FARMS | CRMA_v2 dChip | ecn.FARMS | CRMA _v2 dChip
AUC 0.9852 0.9820 0.9819 0.9838 0.9807 0.9721

1 FP 8472 9106 9018 56145 68593 77438
P-VALUE - 1.8e-65 3.1e-26 - 1e-1160 1e-6049

AUC 0.9983 0.9974 0.9969 0.9983 0.9963 0.9894

2 FP 1375 1449 1611 9777 11705 18039
P-VALUE - 2.7e-4 2.5e-12 - le-317 1e-3713

AUC 0.9998 0.9995 0.9992 0.9998 0.9990 0.9953

3 FP 240 366 440 1573 3462 6625
P-VALUE - 2.6e-38 7.2e-58 - 1e-896 1e-3455

Table: AUC values at the sex classification task for 59 HapMap CEU founders
based on the X chromosome copy numbers:
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cn.FARMS

CNYV detection benchmark

@ “The International HapMap Project” phase 2 data set with
Affymetrix SNP 6.0 arrays

o Goal is to identify true rare CNV regions with a low FDR
@ "“True CNV regions” are those regions which were detected and
verified by different bio-technologies

@ NimbleGen tiling arrays, Agilent CGH arrays, lllumina Infinium
genotyping (Human660W)

e 2,515 true CNV regions as reference
@ CNV calling criteria:

o I/NI call for cn.FARMS
e Variance of the raw copy numbers on the samples for dChip and
CRMA_v2
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cn.FARMS

CNV detection plot
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Figure: CNV calling plots across chromosome 4 for 3-loci regions (each point
in the plot summarizes 3 loci).
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CNV detection on HapMap (multi-loci 3)

cn.FARMS
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cn.FARMS

CNV detection on HapMap (multi-loci 3) <

Whole genome
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cn.FARMS

CNV detection on HapMap (multi-loci 5)
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cn.FARMS

CNV detection on HapMap (multi-loci 5)
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cn.FARMS

Interim results

@ cn.FARMS outperforms aroma.affymetrix, dChip, CNAG and CNAT
in terms of sensitivity and specificity

e Shows good signal detection while being robust against measurement
noise

o |/NI call correctly prioritizes CNV regions of interest
o Reduces the FDR at CNV detection
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CAMDA data sets

Rare CNV events

Sparse data
CNV data is sparse with an kurtosis larger than 30 — change the model
assumption to a Laplacian distributed hidden variable z.

Laplace

| Gaugsian

Controlling the false discovery rate at detection of biological aberrations in -omics data 32



CAMDA data sets

Rare CNV events

Sparse data
CNV data is sparse with an kurtosis larger than 30 — change the model
assumption to a Laplacian distributed hidden variable z.

Gauss vs. Laplace

Laplace

| Gaugsian
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CAMDA data sets

Rare CNV events

Sparse data
CNV data is sparse with an kurtosis larger than 30 — change the model
assumption to a Laplacian distributed hidden variable z.

Gauss vs. Laplace Close up Gauss vs. Laplace

Laplace

| Gaugsian
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CAMDA data sets

Laplacian FARMS

Data likelihood

P} IAY) = jp({xﬂz,x,% ) 2

Controlling the false discovery rate at detection of biological aberrations in -omics data

33



CAMDA data sets

Laplacian FARMS

Data likelihood

P} IAY) = jp({xﬂz,x,% ) 2

Problem

@ The likelihood is analytically intractable for the non-Gaussian
prior
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CAMDA data sets

Laplacian FARMS

Data likelihood

P} IAY) = jp({xﬂz,x,% ) 2

Problem

@ The likelihood is analytically intractable for the non-Gaussian
prior

Solution

@ Variational EM approach

@ Based on a local Gaussian approximation to the mode
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CAMDA data sets

CAMDA copy number data sets

@ Glioblastoma multiforme data sets

e 167 Agilent 415K CGH arrays from Harvard
262 Agilent 244A CGH arrays from Harvard
461 Agilent 244A CGH arrays from MSKCC
533 Affymetrix SNP 6.0 arrays from Broad

432 lllumina HumanHap 550 from Stanford

@ CN data for SNP 6.0 and HumanHap 550 were not available
@ 167 matched arrays HMS 415K and MSKCC 244A remain
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CAMDA data sets

Merged raw data (Chromosome 1)

MSK Agilient 244K TCGA-08-0155

B
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B
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CAMDA data sets

Prior weight 0.5

raw TCGA-06-0155
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CAMDA data sets

Prior weight 1.5

raw TCGA-06-0155
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CAMDA data sets

Prior weight 2.0

raw TCGA-06-0155
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CAMDA data sets

Prior weight 2.5

raw TCGA-06-0155
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Conclusions

Conclusion

@ Latent variable models decompose observation into noise and signal

@ Remove noise so that aberration detection take place in noise-free
data

@ Reduce dimensionality by filtering for signal variance
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Conclusions

Open source software

Bioconductor

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

e FARMS, I/NI call and cn.FARMS are publicly available as
Bioconductor R packages

@ Software homepages:

o http://www.bioinf.jku.at/software/farms/farms.html
e http://www.bioinf jku.at/software/cnfarms/cnfarms.html
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Conclusions

Sparse overcomplete representation

3000 4000
L L

2000

Allele A - nucleotide G

1000
L
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Allele B - nucleotide A Allele A

A sparse overcomplete representation of two-dimensional data xs € R? can
be modeled as: xs = As zs + €5 where zs € R3, Ay € R?*3. Sparseness
is enforced by assuming a Laplacian prior for zg:

3
plzs) = (277 JTexp (V2 lza)

I=1
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