
Motivation Basic concept to reduce the FDR FARMS cn.FARMS CAMDA data sets Conclusions

Controlling the false discovery rate at
detection of biological aberrations in -omics

data
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Sources of -omics data

Measurement techniques

Next generations sequencing

Mass Spec

Microarrays

Application

mRNA and miRNA (gene expression profiling/transcriptomics)

Copy numbers (structural variant determination/genomics)

SNPs (genotyping/genomics)

Proteins and Metabolites (proteomics/metabolomics)

Aberrations

Differentially expressed

Loss and gain of DNA segments, loss of heterozygosity

SNP frequencies

Different concentration
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Characteristics of -omics data

High-dimensional

# Genes, #miRNAs

# Loci

# SNPs

# Proteins

Noisy

Measurement noise

Cross-hybridization, GC-content bias

Many falsely discovered aberrations or false positives (high FDR)
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Problems caused by false discoveries

FPs are not associated with an experimental condition

while correction for multiple testing must take them into account

Decreases the study’s discovery power

Decreases the significance of discoveries

FPs misguide researchers

Demand for methods with a low false discovery rate at detection of

biological aberrations in -omics data
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Latent variable models

Decompose observation into noise and signal by a generative model

Remove noise⇒ aberration detection in noise-free data

Decrease dimensionality⇒ signal variance for filtering (Informative/ Non-Informative calls)

Model across samples for each gene, locus, SNP, or protein

Use latent variable to represent the gene expression level, DNA copy

number, genotype, or protein concentration
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Our latent variable models

Next generations sequencing:

cn.MOPS (Copy Number estimation by a Mixture Of PoissonS)→ DNA copy numbers

Microarray:

FARMS (Factor Analysis for Robust Microarray Summarization)→ gene expression and miRNA

cn.FARMS ( Copy Number estimation by FARMS)→ DNA copy numbers
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FARMS: Facts and assumptions

Gene measured by

different probes

Goal: summarize probe

intensities to an

expression value

Noise-free probes are
positively correlated

Variable probe

qualities

High quality probes

are linear dependent

Replicate probe

intensities are Gaussian

distributed

Probe 1

1 0 1 2 1 1 2 3 4 2 0 1 2 3 2 1 0 1 2 2 0 1 2

2
0

1
2

1
0

1
2

Probe 2

Probe 3

2
0

1
2

1
1

2
3

4

Probe 4

Probe 5

2
0

1
2

2
0

1
2

3

Probe 6

Probe 7

2
0

1
2

2
0

1
2

Probe 8

Probe 9

2
0

1
2

3

2
0

1
2

Probe 10

2 0 1 2 2 0 1 2 2 0 1 2 2 1 0 1 2 2 0 1 2 3 4 2 0 2

4
2

0
2

Probe 11
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FARMS: The idea
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FARMS: The data
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FARMS: The model

x = λλλ z + εεε

x ,λλλ ∈ Rn and z ∼ N (0,1), εεε ∼ N (0,ΨΨΨ).

Probe intensities: {x} = {x1, . . . ,xN } (log-transformed, standardized)

Hidden factor z represents the gene expression level

εεε accounts for the independent noise in the probes intensities

εεε and z are independent

Model selection: maximize the likelihood
(
x ∼ N

(
λλλλλλT +ΨΨΨ

))
with

respect to ΨΨΨ and λλλ by an EM algorithm
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FARMS: Bayes framework

Posterior

p(λλλ,ΨΨΨ | {x}) ∝ p({x} | λλλ,ΨΨΨ) p(λλλ)

Prior knowledge

Positive λλλ ensure positive

probe correlation

Most genes show no or

small signal (large signals

are of interest in a study)

Rectified Gaussian

λj = max{yj ,0} with

yj ∼ N (µλ,σλ)
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FARMS: EM updates
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FARMS: Filtering by signal variance
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FARMS: z-posterior

Variance of z | x

Model

x = λλλ z + εεε

and Gaussian z-prior N (0,1) results in the z-posterior p(z | x):

z | x ∼ N
(
µz|x , σ

2
z|x

)
µz|x = (x)T ΨΨΨ−1λλλ

(
1 + λλλTΨΨΨ−1λλλ

)−1

σ2
z|x =

(
1 + λλλTΨΨΨ−1λλλ

)−1
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FARMS: The I/NI call

The variance of z is decomposed into a signal and a noise part:

1 = var(z) =
1
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z|x is called the ”Informative/NonInformative (I/NI) call” and is one

minus the signal variance. We see that large λλλ (going with low noise ΨΨΨ)

leads to low variance of z | x which means a precise conditional z .
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FARMS: Independent I/NI calls filtering

Independent filtering increases detection
power for high-throughput experiments
Richard Bourgona, Robert Gentlemanb, and Wolfgang Huberc,1

aEuropean Bioinformatics Institute, Cambridge CB10 1SD, United Kingdom; bGenentech, Inc., 1 DNA Way, South San Francisco, CA 94080-4990; and
cEuropean Molecular Biology Laboratory, 69117 Heidelberg, Germany

Edited by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, and approved March 22, 2010 (received for review December 3, 2009)

With high-dimensional data, variable-by-variable statistical testing
is often used to select variables whose behavior differs across con-
ditions. Such an approach requires adjustment for multiple testing,
which can result in low statistical power. A two-stage approach
that first filters variables by a criterion independent of the test
statistic, and then only tests variables which pass the filter, can
provide higher power. We show that use of some filter/test statis-
tics pairs presented in the literature may, however, lead to loss of
type I error control. We describe other pairs which avoid this
problem. In an application to microarray data, we found that
gene-by-gene filtering by overall variance followed by a t-test
increased the number of discoveries by 50%. We also show that
this particular statistic pair induces a lower bound on fold-change
among the set of discoveries. Independent filtering—using filter/
test pairs that are independent under the null hypothesis but
correlated under the alternative—is a general approach that can
substantially increase the efficiency of experiments.

gene expression ∣ multiple testing

In many experimental contexts which generate high-dimensional
data, variable-by-variable statistical testing is used to select vari-

ables whose behavior differs across the set of studied conditions.
Each variable is associated with a null hypothesis which asserts
that behavior for that variable does not differ across conditions.
A null hypothesis is rejected when observed data, summarized
into a per-variable p-value, are deemed to be inconsistent with
the hypothesis. In biology, for example, microarrays or high-
throughput sequencing may be used to identify genes (variables)
whose expression level shows systematic covariation with a treat-
ment or phenotype of interest. The evidence for such covariation
is assessed by applying a statistical test to each gene separately. In
the case of microarrays, gene-by-gene t-tests are frequently used
for two-class comparisons. This approach can be generalized to
more complex experimental designs through the use of ANOVA
(1); it has also been refined for experiments with small sample
sizes by the introduction of moderated variance estimators (2),
as in the SAM (3) and limma (4) software. When transcript
abundance is measured by high-throughput sequencing rather
than microarrays, gene-level p-values may instead be computed
on the basis of gene-level read count statistics (5).

Because a large number of hypothesis tests are performed in
such variable-by-variable analyses, many true-null hypotheses
will produce small p-values by chance. As a consequence, numer-
ous false positives, or type I errors, will result if p-values are
compared to standard single-test thresholds. There are well-
established procedures which address the multiple testing pro-
blem by adjusting the p-values to control various experiment-wide
false positive measures, e.g., the family-wise error rate (FWER)
or the false discovery rate (FDR). (See ref. 6 for a review).

Multiple testing adjustment provides control over the extent to
which false positives occur, but such control comes at the cost of
reduced power to detect true positives. Further, this power reduc-
tion worsens as more hypotheses are tested. Typically, the number
of genes represented on a microarray is in the tens of thousands,
while the number of differentially expressed genes may be only a

few dozen or hundred. As a consequence, the power of an experi-
ment to detect a given differentially expressed gene could poten-
tially be quite low.

In the microarray literature, several authors have suggested
filtering to reduce the impact that multiple testing adjustment
has on detection power (7–12). Conceptually similar screening
approaches have also been proposed for variable selection in
high-dimensional regression models (13, 14). In filtering for
microarray applications, the data are first used to identify and
remove a set of genes which seem to generate uninformative
signal. Second, formal statistical testing is applied only to genes
which pass the filter. An effective filter will enrich for true differ-
ential expression while simultaneously reducing the number of
hypotheses tested at stage two—making multiple testing adjust-
ment less severe. Such filtering is further motivated by the obser-
vation that the set of genes which are not differentially expressed
can be partitioned into two groups: (i) genes that are not ex-
pressed in any of the conditions of the experiment or whose
reporters on the array lack sensitivity to detect their expression;
and (ii) genes that are expressed and detectable, but not differ-
entially expressed across conditions.

This two-stage approach, the use of which need not be re-
stricted to gene expression applications, assesses each variable
on the basis of both a filter statistic (UI) and a test statistic
(UII). Both statistics are required to exceed their respective cut-
offs. Note, however, that the two-stage approach is not equivalent
to standard hypothesis testing based on the joint distribution of
the filter and test statistics: the latter uses a joint null distribution
to compute type I error rate, while the former only considers the
null distribution of the stage-two test statistic.

Some authors specifically recommend using nonspecific or
unsupervised filters which do not make use of sample class labels,
and they suggest that nonspecific filtering will not interfere with
formal statistical testing (7, 9). Nonspecific filter statistics
include, for example, the overall variance and overall mean—
computed across all arrays, ignoring class label. Some Affymetrix
arrays permit Present/Absent calls for each gene; requiring a
minimum fraction of Present calls across all arrays also yields
a nonspecific filter (15).

While filtering has the potential to substantially increase the
number of discoveries (Fig. 1), its validity has been debated.
One criticism is that data-based filtering constitutes a statistical
test. Ignoring this fact, and computing and adjusting the remain-
ing p-values as if filtering had not taken place, may result in overly
optimistic adjusted p-values and a true false positive rate which is
larger than reported. Clearly, increasing the number of discov-
eries only implies an increase in statistical power if the additional
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W.H. analyzed data and wrote the paper.
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For permutation invariant test statistics and for the t-test statistic T

(only for Gaussian z-prior), the I/NI call filter applied to null

hypotheses is independent of the statistic

This guarantees type I error rate control if first filtering by I/NI calls,

then using these statistics, and finally applying correction for

multiple testing.

http://www.bioinf.jku.at/software/cnfarms/proof ini.pdf
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FARMS: I/NI calls distribution
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A pipeline for gene expression analysis

Background 
correction Normalisation PM correction Summarisation

Probe 
level data

Expression level

RMA
MAS 5.0

None

Quantilen
Cyclic Loess

Constant
VSN

PM only
PM-MM

IM
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Medianpolish

Tukey Bi-Weight
LiWong

AverageDiff

Figure: Probe-level modeling is a mandatory step
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Receiver Operator Characteristics (ROC)

Affycomp II / GoldenSpike Benchmark (AUC - area under the curve):
Intensity FARMS RMA GCRMA MAS 5.0 MBEI

HGU133

Low 0.94 0.51 0.62 0.07 0.21

HGU133
Med 0.99 0.91 0.94 0.00 0.43HGU133 High 1.00 0.64 0.59 0.00 0.16

HGU133

Mean 0.95 0.60 0.69 0.05 0.26

HGU95

Low 0.91 0.57 0.45 0.09 -

HGU95
Med 1.00 0.91 0.91 0.00 -HGU95 High 0.98 0.96 0.92 0.00 -

HGU95

Mean 0.93 0.65 0.57 0.06 -
GoldenSpike 0.85 0.76 0.78 0.28 0.39

Computational costs for processing 60 arrays
FARMS RMA MAS 5.0 MBEI

Computational time [s] 92 384 851 591
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Results I/NI call

Leads on average to 84 (±1.5)% exclusion rate

Applied on 30 real life studies

A/P calls excluded only 33 (±1)%

Validation was carried out on spiked-in data:

Exclusion rate on spiked-in data sets:

Informative Non-informative Exclusion rate Detected 
Spiked-ins

Detected 
Pseudo Spiked-ins

HGU133A 81 22219 99.63% 42/42 28/28*

HGU95_V2 56 12570 99.56% 14/14 5/5**

Hu. Gene 1.0 ST 40 19,753 99.80% 15/15*** -

*McGee et al. 2006; **Wolfinger and Chu 2002; Cope et al. 2004; ***long spiked-in fragments
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I/NI call vs. A/P call
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Figure: Variance and mean of genes selected by A/P calls and I/NI calls.
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A pipeline for copy number analysis

Normalization Fragment length 
correction
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SMAP

Birdseye
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M
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Single-locus
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Figure: Copy number analysis for (Affymetrix) DNA genotyping arrays as a

three-step pipeline: (1) Normalization, (2) Modeling, and (3) Segmentation.
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Benchmark data sets

30 male and 30 female CEU founders

SNP 6.0 and 250K NSP Arrays

Classification task: distinguish males from females by their copy

number on the X chromosome

Evaluation on:

Single-locus / multi-loci classification (window mode)

Multi-loci summarization with

cn.FARMS
Median locus for dChip and CRMA v2
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ROC-Curve (250K arrays)

single-locus multi-loci, 3 markers

TPR / FPR

True positive rate (TPR) = TP/(TP+FN)

False positive rate (FPR) = FP/(FP+TN)

Controlling the false discovery rate at detection of biological aberrations in -omics data 24



Motivation Basic concept to reduce the FDR FARMS cn.FARMS CAMDA data sets Conclusions

ROC-Curve (250K arrays)

single-locus multi-loci, 3 markers

TPR / FPR

True positive rate (TPR) = TP/(TP+FN)

False positive rate (FPR) = FP/(FP+TN)

Controlling the false discovery rate at detection of biological aberrations in -omics data 24



Motivation Basic concept to reduce the FDR FARMS cn.FARMS CAMDA data sets Conclusions

ROC-Curve (SNP 6.0 arrays)

single-locus multi-loci, 3 markers
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False positive rate (FPR) = FP/(FP+TN)
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Results cn.FARMS

Affymetrix Mapping250K_NSPAffymetrix Mapping250K_NSPAffymetrix Mapping250K_NSP Affymetrix SNP 6.0Affymetrix SNP 6.0Affymetrix SNP 6.0

Loci Criteria cn.FARMS CRMA_v2 dChip cn.FARMS CRMA_v2 dChip

AUC 0.9852 0.9820 0.9819 0.9838 0.9807 0.9721

1 FP 8472 9106 9018 56145 68593 77438

p-value – 1.8e-65 3.1e-26 – 1e-1160 1e-6049

AUC 0.9983 0.9974 0.9969 0.9983 0.9963 0.9894

2 FP 1375 1449 1611 9777 11705 18039

p-value – 2.7e-4 2.5e-12 – 1e-317 1e-3713

AUC 0.9998 0.9995 0.9992 0.9998 0.9990 0.9953

3 FP 240 366 440 1573 3462 6625

p-value – 2.6e-38 7.2e-58 – 1e-896 1e-3455

AUC 1.000 0.9999 0.9998 0.9999 0.9995 0.9976

4 FP 49 95 153 366 1338 2985

p-value – 2.8e-10 1.9e-48 – 1e-594 1e-2013

Table: AUC values at the sex classification task for 59 HapMap CEU founders

based on the X chromosome copy numbers:
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CNV detection benchmark

“The International HapMap Project” phase 2 data set with

Affymetrix SNP 6.0 arrays

Goal is to identify true rare CNV regions with a low FDR

“True CNV regions” are those regions which were detected and

verified by different bio-technologies

NimbleGen tiling arrays, Agilent CGH arrays, Illumina Infinium
genotyping (Human660W)

2,515 true CNV regions as reference

CNV calling criteria:

I/NI call for cn.FARMS

Variance of the raw copy numbers on the samples for dChip and

CRMA v2
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CNV detection plot

Figure: CNV calling plots across chromosome 4 for 3-loci regions (each point

in the plot summarizes 3 loci).
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CNV detection on HapMap (multi-loci 3)

Chromosome 8 Whole genome

Precision / Recall

Recall = TP/(TP+FN)

Precision = TP/(TP+FP) = 1 - FDR
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CNV detection on HapMap (multi-loci 5)

Chromosome 8 Whole genome

Precision / Recall

Recall = TP/(TP+FN)

Precision = TP/(TP+FP) = 1 - FDR
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CNV detection on HapMap (multi-loci 5)

Chromosome 8 Whole genome

Precision / Recall

Recall = TP/(TP+FN)

Precision = TP/(TP+FP) = 1 - FDR
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Interim results

cn.FARMS outperforms aroma.affymetrix, dChip, CNAG and CNAT

in terms of sensitivity and specificity

Shows good signal detection while being robust against measurement

noise

I/NI call correctly prioritizes CNV regions of interest

Reduces the FDR at CNV detection
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Rare CNV events

Sparse data

CNV data is sparse with an kurtosis larger than 30 → change the model

assumption to a Laplacian distributed hidden variable z .

Gauss vs. Laplace

Laplace

Gaussian

Close up Gauss vs. Laplace
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Laplacian FARMS

Data likelihood

p ({x} | λλλ,ΨΨΨ) =

∫
p ({x} | z ,λλλ,ΨΨΨ) p (z) dz

Problem

The likelihood is analytically intractable for the non-Gaussian

prior

Solution

Variational EM approach

Based on a local Gaussian approximation to the mode
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CAMDA copy number data sets

Glioblastoma multiforme data sets

167 Agilent 415K CGH arrays from Harvard

262 Agilent 244A CGH arrays from Harvard

461 Agilent 244A CGH arrays from MSKCC

533 Affymetrix SNP 6.0 arrays from Broad

432 Illumina HumanHap 550 from Stanford

CN data for SNP 6.0 and HumanHap 550 were not available

167 matched arrays HMS 415K and MSKCC 244A remain
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Merged raw data (Chromosome 1)
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Prior weight 0.5
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Prior weight 1.5
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Prior weight 2.0
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Prior weight 2.5
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Conclusion

Latent variable models decompose observation into noise and signal

Remove noise so that aberration detection take place in noise-free

data

Reduce dimensionality by filtering for signal variance
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Open source software

FARMS, I/NI call and cn.FARMS are publicly available as

Bioconductor R packages

Software homepages:

http://www.bioinf.jku.at/software/farms/farms.html

http://www.bioinf.jku.at/software/cnfarms/cnfarms.html
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Sparse overcomplete representation

A sparse overcomplete representation of two-dimensional data x s ∈R2 can

be modeled as: x s = λλλs zs + εεεs where zs ∈ R3, λλλs ∈ R2×3. Sparseness

is enforced by assuming a Laplacian prior for zs :

p (zs) = (2)−
3
2

3∏
l=1

exp
(√

2 |zsl |
)
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