

Controlling the false discovery rate at detection of biological aberrations in -omics data

Djork-Arné Clevert, Andreas Mayr, Andreas Mitterecker, Günter Klambauer, and Sepp Hochreiter

Institute of Bioinformatics, JKU Linz

July 15th, 2011

Sources of -omics data

- Measurement techniques
 - Next generations sequencing
 - Mass Spec
 - Microarrays
- Application
 - mRNA and miRNA (gene expression profiling/transcriptomics)
 - Copy numbers (structural variant determination/genomics)
 - SNPs (genotyping/genomics)
 - Proteins and Metabolites (proteomics/metabolomics)
- Aberrations
 - Differentially expressed
 - Loss and gain of DNA segments, loss of heterozygosity
 - SNP frequencies
 - Different concentration

Characteristics of -omics data

• High-dimensional

- # Genes, #miRNAs
- # Loci
- # SNPs
- $\bullet \ \# \ \mathsf{Proteins}$
- Noisy
 - Measurement noise
 - Cross-hybridization, GC-content bias

Many falsely discovered aberrations or false positives (high FDR)

Problems caused by false discoveries

- FPs are not associated with an experimental condition while correction for multiple testing must take them into account
 - Decreases the study's discovery power
 - Decreases the significance of discoveries
- FPs misguide researchers

Demand for **methods with a low false discovery** rate at detection of biological aberrations in -omics data

Latent variable models

- Decompose observation into noise and signal by a generative model
 - Remove noise
 - $\Rightarrow~$ aberration detection in noise-free data
 - Decrease dimensionality
 - \Rightarrow signal variance for filtering (Informative/ Non-Informative calls)
- Model across samples for each gene, locus, SNP, or protein
- Use latent variable to represent the gene expression level, DNA copy number, genotype, or protein concentration

Our latent variable models

Next generations sequencing:

cn.MOPS (Copy Number estimation by a Mixture Of PoissonS)
 → DNA copy numbers

Microarray:

- FARMS (Factor Analysis for Robust Microarray Summarization)
 - $\rightarrow~$ gene expression and miRNA
- cn.FARMS (Copy Number estimation by FARMS)
 - $\rightarrow~$ DNA copy numbers

FARMS: Facts and assumptions

- Gene measured by different probes
- Goal: summarize probe intensities to an expression value
- Noise-free probes are positively correlated
 - Variable probe qualities
 - High quality probes are linear dependent
- Replicate probe intensities are Gaussian distributed

Higher mRNA concentration \rightarrow larger intensities

FARMS: The idea

FARMS: The data

FARMS: The model

$$x = \mathbf{\lambda} z + \mathbf{\epsilon}$$

- $x, \lambda \in \mathbb{R}^n$ and $z \sim \mathcal{N}(0, 1)$, $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \boldsymbol{\Psi})$.
- Probe intensities: $\{x\} = \{x_1, \dots, x_N\}$ (log-transformed, standardized)
- Hidden factor z represents the gene expression level
- $\boldsymbol{\epsilon}$ accounts for the independent noise in the probes intensities
- c and z are independent

Model selection: maximize the likelihood $(x \sim \mathcal{N}(\lambda \lambda^T + \Psi))$ with respect to Ψ and λ by an EM algorithm

FARMS: Bayes framework

Posterior

$p(\mathbf{\lambda}, \mathbf{\Psi} | \{x\}) \propto p(\{x\} | \mathbf{\lambda}, \mathbf{\Psi}) p(\mathbf{\lambda})$

Prior knowledge

- Positive **λ** ensure positive probe correlation
- Most genes show no or small signal (large signals are of interest in a study)

Rectified Gaussian

 $\lambda_j = \max\{y_j, 0\} \text{ with } \\ y_j \sim \mathcal{N}(\mu_\lambda, \sigma_\lambda)$

FARMS: Bayes framework

Posterior

$p(\mathbf{\lambda}, \mathbf{\Psi} | \{x\}) \propto p(\{x\} | \mathbf{\lambda}, \mathbf{\Psi}) p(\mathbf{\lambda})$

Prior knowledge

- Positive λ ensure positive probe correlation
- Most genes show no or small signal (large signals are of interest in a study)

Rectified Gaussian

$$\begin{split} \lambda_j &= \max\{y_j, 0\} \text{ with } \\ y_j &\sim \mathscr{N}\left(\mu_\lambda, \sigma_\lambda\right) \end{split}$$

FARMS: Bayes framework

Posterior

$$p(\mathbf{\lambda}, \mathbf{\Psi} | \{x\}) \propto p(\{x\} | \mathbf{\lambda}, \mathbf{\Psi}) p(\mathbf{\lambda})$$

Prior knowledge

- Positive λ ensure positive probe correlation
- Most genes show no or small signal (large signals are of interest in a study)

Rectified Gaussian

$$\begin{split} \lambda_{j} &= \max\{y_{j}, 0\} \text{ with } \\ y_{j} &\sim \mathcal{N}\left(\mu_{\lambda}, \sigma_{\lambda}\right) \end{split}$$

FARMS: EM updates

E-step:

$$\mathsf{E}_{z_i \mid x_i}\left(z_i\right) = \mu_{z_i \mid x_i} \quad \text{ and } \quad \mathsf{E}_{z_i \mid x_i}\left(z_i^2\right) = \mu_{z_i \mid x_i}^2 \ + \ \sigma_{z_i \mid x_i}^2$$

M-step:

$$\begin{split} \lambda_{j}^{\mathsf{Gauss}} &= \left(\frac{1}{N}\sum_{i=1}^{N}x_{ij} \; \mathsf{E}_{z_{i}|x_{j}}\left(z_{i}\right) + \frac{1}{N}\frac{\mu_{\lambda} \; \Psi_{jj}^{\mathsf{old}}}{\sigma_{\lambda}^{2}}\right) \left(\frac{1}{N}\sum_{i=1}^{N}\mathsf{E}_{z_{i}|x_{i}}\left(z_{i}^{2}\right) + \frac{1}{N}\frac{\Psi_{jj}^{\mathsf{old}}}{\sigma_{\lambda}^{2}}\right)^{-1} \\ \lambda_{j}^{\mathsf{new}} &= \begin{cases} \lambda_{j}^{\mathsf{Gauss}} & \text{for } \lambda_{j}^{\mathsf{Gauss}} > 0 \\ 0 & \text{for } \lambda_{j}^{\mathsf{Gauss}} \leq 0 \end{cases}, \\ \Psi_{jj}^{\mathsf{new}} &= \left[\operatorname{diagvect}\left(\frac{1}{N}\sum_{i=1}^{N}x_{i}x_{i}^{T}\right)\right]_{j} - \lambda_{j}^{\mathsf{new}}\left[\frac{1}{N}\sum_{i=1}^{N}\mathsf{E}_{z_{i}|x_{i}}\left(z_{i}\right)x_{i}\right]_{j} + \frac{1}{N}\frac{\Psi_{jj}^{\mathsf{old}}}{\sigma_{\lambda}^{2}}\lambda_{j}^{\mathsf{new}}\left(\mu_{\lambda} - \lambda_{j}^{\mathsf{new}}\right) \end{split}$$

FARMS: EM updates

E-step:

$$\mathsf{E}_{z_i \mid x_i}\left(z_i\right) = \mu_{z_i \mid x_i} \quad \text{ and } \quad \mathsf{E}_{z_i \mid x_i}\left(z_i^2\right) = \mu_{z_i \mid x_i}^2 \ + \ \sigma_{z_i \mid x_i}^2$$

M-step:

$$\begin{split} \lambda_{j}^{\text{Gauss}} &= \left(\frac{1}{N}\sum_{i=1}^{N}x_{ij} \; \mathsf{E}_{z_{i}\mid x_{i}}\left(z_{i}\right) + \frac{1}{N}\frac{\mu_{\lambda} \; \Psi_{jj}^{\text{old}}}{\sigma_{\lambda}^{2}}\right) \left(\frac{1}{N}\sum_{i=1}^{N}\mathsf{E}_{z_{i}\mid x_{i}}\left(z_{i}^{2}\right) + \frac{1}{N}\frac{\Psi_{jj}^{\text{old}}}{\sigma_{\lambda}^{2}}\right)^{-1} \\ \lambda_{j}^{\text{new}} &= \begin{cases} \lambda_{j}^{\text{Gauss}} & \text{for } \lambda_{j}^{\text{Gauss}} > 0 \\ 0 & \text{for } \lambda_{j}^{\text{Gauss}} \leq 0 \end{cases}, \\ \Psi_{jj}^{\text{new}} &= \left[\operatorname{diagvect}\left(\frac{1}{N}\sum_{i=1}^{N}x_{i}x_{i}^{T}\right)\right]_{j} - \lambda_{j}^{\text{new}}\left[\frac{1}{N}\sum_{i=1}^{N}\mathsf{E}_{z_{i}\mid x_{i}}\left(z_{i}\right)x_{i}\right]_{j} + \frac{1}{N}\frac{\Psi_{jj}^{\text{old}}}{\sigma_{\lambda}^{2}}\lambda_{j}^{\text{new}}\left(\mu_{\lambda} - \lambda_{j}^{\text{new}}\right) \end{split}$$

FARMS: Filtering by signal variance

BIOIN

FARMS: *z*-posterior

Variance of $z \mid x$

Model

$$x = \lambda z + \epsilon$$

and Gaussian z-prior $\mathcal{N}(0,1)$ results in the z-posterior $p(z \mid x)$:

$$z \mid x \sim \mathcal{N} \left(\mu_{z \mid x} , \sigma_{z \mid x}^{2} \right)$$

$$\mu_{z \mid x} = (x)^{T} \Psi^{-1} \lambda \left(1 + \lambda^{T} \Psi^{-1} \lambda \right)^{-1}$$

$$\sigma_{z \mid x}^{2} = \left(1 + \lambda^{T} \Psi^{-1} \lambda \right)^{-1}$$

FARMS: The I/NI call

The variance of z is decomposed into a signal and a noise part:

$$1 = \operatorname{var}(z) = \frac{1}{N} \sum_{i=1}^{N} \operatorname{E}_{z_{i}|x_{i}}(z_{i}^{2}) = \frac{1}{N} \sum_{i=1}^{N} \left(\mu_{z_{i}|x_{i}}^{2} + \sigma_{z_{i}|x_{i}}^{2} \right)$$
$$\frac{1}{N} \sum_{i=1}^{N} \sigma_{z_{i}|x_{i}}^{2} = 1 - \frac{1}{N} \sum_{i=1}^{N} \mu_{z_{i}|x_{i}}^{2}$$
$$\sigma_{z|x}^{2} = 1 - \frac{1}{N} \sum_{i=1}^{N} \mu_{z_{i}|x_{i}}^{2} = \left(1 + \boldsymbol{\lambda}^{T} \boldsymbol{\Psi}^{-1} \boldsymbol{\lambda} \right)^{-1}$$

 $\sigma_{z|x}^2$ is called the "Informative/NonInformative (I/NI) call" and is one minus the signal variance. We see that large λ (going with low noise Ψ) leads to low variance of $z \mid x$ which means a precise conditional z.

FARMS: Independent I/NI calls filtering

Independent filtering increases detection power for high-throughput experiments

Richard Bourgon^a, Robert Gentleman^b, and Wolfgang Huber^{c1}

"European Bioinformatics Institute, Cambridge CB10 1SD, United Kingdom; "Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080-4990; and 'European Molecular Biology Laboratory, 69117 Heidelberg, Germany

Edited by Stephen E. Fienberg, Carnegie Mellon University, Pittsburgh, PA, and approved March 22, 2010 (received for review December 3, 2009)

- For permutation invariant test statistics and for the *t*-test statistic *T* (only for Gaussian *z*-prior), the I/NI call filter applied to null hypotheses is independent of the statistic
- This guarantees type I error rate control if first filtering by I/NI calls, then using these statistics, and finally applying correction for multiple testing.
- http://www.bioinf.jku.at/software/cnfarms/proof_ini.pdf

FARMS: I/NI calls distribution

Bimodal distribution

- Enforced by the parameter prior
- Modes clearly separated (insensitive for filtering threshold)
- Works for unbalanced data (few samples contain a signal) in contrast to variance filtering (Bourgon et al. (2010))
- Works for few genes with a signal

A pipeline for gene expression analysis

Figure: Probe-level modeling is a mandatory step

BIOIN

Receiver Operator Characteristics (ROC)

Affycomp II / GoldenSpike Benchmark (AUC - area under the curve):						
	INTENSITY	FARMS	RMA	GCRMA	MAS 5.0	MBEI
HGU133	Low	0.94	0.51	0.62	0.07	0.21
	Med	0.99	0.91	0.94	0.00	0.43
	High	1.00	0.64	0.59	0.00	0.16
	Mean	0.95	0.60	0.69	0.05	0.26
HGU95	Low	0.91	0.57	0.45	0.09	-
	Med	1.00	0.91	0.91	0.00	-
	High	0.98	0.96	0.92	0.00	-
	Mean	0.93	0.65	0.57	0.06	-
GoldenSpike		0.85	0.76	0.78	0.28	0.39

A CC ١

Computational costs for processing 60 arrays

	FARMS	RMA	MAS 5.0	MBEI
Computational time [s]	92	384	851	591

Results I/NI call

- Applied on 30 real life studies
- A/P calls excluded only 33 $(\pm 1)\%$
- Validation was carried out on spiked-in data:

Exclusion rate on spiked-in data sets:

	INFORMATIVE	Non-informative	Exclusion rate	Detected Spiked-ins	Detected Pseudo Spiked-ins
HGU133A	81	22219	99.63%	42/42	28/28*
HGU95_V2	56	12570	99.56%	14/14	5/5**
HU. GENE 1.0 ST	40	19,753	99.80%	15/15***	-

*McGee et al. 2006; **Wolfinger and Chu 2002; Cope et al. 2004; ***long spiked-in fragments

I/NI call vs. A/P call

Figure: Variance and mean of genes selected by A/P calls and I/NI calls.

A pipeline for copy number analysis

Figure: Copy number analysis for (Affymetrix) DNA genotyping arrays as a three-step pipeline: (1) Normalization, (2) Modeling, and (3) Segmentation.

Benchmark data sets

- 30 male and 30 female CEU founders
 - SNP 6.0 and 250K NSP Arrays
 - Classification task: distinguish males from females by their copy number on the X chromosome
- Evaluation on:
 - Single-locus / multi-loci classification (window mode)
 - Multi-loci summarization with
 - cn.FARMS
 - Median locus for dChip and CRMA_v2

ROC-Curve (250K arrays)

TPR / FPR

ROC-Curve (250K arrays)

TPR / FPR

ROC-Curve (SNP 6.0 arrays)

TPR / FPR

ROC-Curve (SNP 6.0 arrays)

TPR / FPR

Results cn.FARMS

		AFFYMETRIX MAPPING250K_NSP			Affymetrix SNP 6.0			
Loci	Criteria	cn.FARMS	CRMA_v2	dChip	cn.FARMS	CRMA_v2	dChip	
1	AUC	0.9852	0.9820	0.9819	0.9838	0.9807	0.9721	
	FP	8472	9106	9018	56145	68593	77438	
	P-VALUE	-	1.8e-65	3.1e-26	-	1e-1160	1e-6049	
2	AUC	0.9983	0.9974	0.9969	0.9983	0.9963	0.9894	
	FP	1375	1449	1611	9777	11705	18039	
	P-VALUE	-	2.7e-4	2.5e-12	-	1e-317	1e-3713	
3	AUC	0.9998	0.9995	0.9992	0.9998	0.9990	0.9953	
	FP	240	366	440	1573	3462	6625	
	P-VALUE	_	2.6e-38	7.2e-58	-	1e-896	1e-3455	

Table: AUC values at the sex classification task for 59 HapMap CEU founders based on the X chromosome copy numbers:

CNV detection benchmark

- "The International HapMap Project" phase 2 data set with Affymetrix SNP 6.0 arrays
 - Goal is to identify true rare CNV regions with a low FDR
 - "True CNV regions" are those regions which were detected and verified by different bio-technologies
 - NimbleGen tiling arrays, Agilent CGH arrays, Illumina Infinium genotyping (Human660W)
 - 2,515 true CNV regions as reference
- CNV calling criteria:
 - I/NI call for cn.FARMS
 - $\bullet\,$ Variance of the raw copy numbers on the samples for dChip and CRMA_v2

CNV detection plot

Figure: CNV calling plots across chromosome 4 for 3-loci regions (each point in the plot summarizes 3 loci).

CNV detection on HapMap (multi-loci 3)

Vhole genome

Precision / Recall

 $\begin{aligned} &\mathsf{Recall} = \mathsf{TP}/(\mathsf{TP} + \mathsf{FN}) \\ &\mathsf{Precision} = \mathsf{TP}/(\mathsf{TP} + \mathsf{FP}) = 1 - \mathsf{FDR} \end{aligned}$

CNV detection on HapMap (multi-loci 3)

Precision / Recall

 $\begin{aligned} &\mathsf{Recall} = \mathsf{TP}/(\mathsf{TP} + \mathsf{FN}) \\ &\mathsf{Precision} = \mathsf{TP}/(\mathsf{TP} + \mathsf{FP}) = 1 - \mathsf{FDR} \end{aligned}$

CNV detection on HapMap (multi-loci 5)

Whole genome

Precision / Recall

 $\begin{aligned} &\mathsf{Recall} = \mathsf{TP}/(\mathsf{TP}+\mathsf{FN}) \\ &\mathsf{Precision} = \mathsf{TP}/(\mathsf{TP}+\mathsf{FP}) = 1 - \mathsf{FDR} \end{aligned}$

CNV detection on HapMap (multi-loci 5)

Precision / Recall

 $\begin{aligned} &\mathsf{Recall} = \mathsf{TP}/(\mathsf{TP} + \mathsf{FN}) \\ &\mathsf{Precision} = \mathsf{TP}/(\mathsf{TP} + \mathsf{FP}) = 1 - \mathsf{FDR} \end{aligned}$

Interim results

- cn.FARMS outperforms aroma.affymetrix, *dChip*, *CNAG* and *CNAT* in terms of sensitivity and specificity
 - Shows good signal detection while being robust against measurement noise
- I/NI call correctly prioritizes CNV regions of interest
 - Reduces the FDR at CNV detection

Rare CNV events

Sparse data

CNV data is sparse with an kurtosis larger than $30 \rightarrow$ change the model assumption to a Laplacian distributed hidden variable *z*.

Rare CNV events

Sparse data

CNV data is sparse with an kurtosis larger than $30 \rightarrow$ change the model assumption to a Laplacian distributed hidden variable *z*.

Rare CNV events

Sparse data

CNV data is sparse with an kurtosis larger than $30 \rightarrow$ change the model assumption to a Laplacian distributed hidden variable *z*.

Laplacian FARMS

Data likelihood

$$p(\{x\} \mid \boldsymbol{\lambda}, \boldsymbol{\Psi}) = \int p(\{x\} \mid z, \boldsymbol{\lambda}, \boldsymbol{\Psi}) p(z) dz$$

Problem

• The **likelihood is analytically intractable** for the non-Gaussian prior

Solution

- Variational EM approach
- Based on a local Gaussian approximation to the mode

Laplacian FARMS

Data likelihood

$$p(\{x\} | \boldsymbol{\lambda}, \boldsymbol{\Psi}) = \int p(\{x\} | z, \boldsymbol{\lambda}, \boldsymbol{\Psi}) p(z) dz$$

Problem

• The **likelihood is analytically intractable** for the non-Gaussian prior

Solution

- Variational EM approach
- Based on a local Gaussian approximation to the mode

Laplacian FARMS

Data likelihood

$$p(\{x\} | \boldsymbol{\lambda}, \boldsymbol{\Psi}) = \int p(\{x\} | z, \boldsymbol{\lambda}, \boldsymbol{\Psi}) p(z) dz$$

Problem

• The **likelihood is analytically intractable** for the non-Gaussian prior

Solution

- Variational EM approach
- Based on a local Gaussian approximation to the mode

CAMDA copy number data sets

Glioblastoma multiforme data sets

- 167 Agilent 415K CGH arrays from Harvard
- 262 Agilent 244A CGH arrays from Harvard
- 461 Agilent 244A CGH arrays from MSKCC
- 533 Affymetrix SNP 6.0 arrays from Broad
- 432 Illumina HumanHap 550 from Stanford
- CN data for SNP 6.0 and HumanHap 550 were not available
- 167 matched arrays HMS 415K and MSKCC 244A remain

Merged raw data (Chromosome 1)

Controlling the false discovery rate at detection of biological aberrations in -omics data

BIC

Prior weight 0.5

Prior weight 1.5

Prior weight 2.0

Prior weight 2.5

- Latent variable models decompose observation into noise and signal
- Remove noise so that aberration detection take place in noise-free data
- Reduce dimensionality by filtering for signal variance

Acknowledgments

Johannes Kepler University

Andreas Mayr Andreas Mitterecker Günter Klambauer Martin Heusel Ulrich Bodenhofer Sepp Hochreiter

Johnson & Johnson R&D

Marianne Tuefferd An De Bondt Willem Talloen Hinrich Göhlmann

Further information

- Clevert DA, Mitterecker A, Mayr A, Klambauer G, Tuefferd M, De Bondt A, Talloen W, Göhlmann H, and Hochreiter S: *cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate* **Nucl. Acids Res.** (2011) 39: e79
- Talloen W, Hochreiter S, Bijnens L, Kasim A, Shkedy Z, Amaratunga D, and Göhlmann H: Filtering data from high-throughput experiments based on measurement reliability PNAS (2010) 107 (46) E173-E174
- Hochreiter S, Clevert DA, and Obermayer K: A new summarization method for Affymetrix probe level data. Bioinformatics (2006), 22: 943-949.
- Talloen W, Clevert DA, Hochreiter S, Amaratunga D, Bijnens L, Kass S and Göhlmann H: *I/NI-calls for the exclusion of non-informative genes: a highly effective filtering tool for microarray data*. **Bioinformatics** (2007) 23(21): 2897-2902

Open source software

- FARMS, I/NI call and cn.FARMS are publicly available as Bioconductor R packages
- Software homepages:
 - http://www.bioinf.jku.at/software/farms/farms.html
 - http://www.bioinf.jku.at/software/cnfarms/cnfarms.html

Sparse overcomplete representation

A sparse overcomplete representation of two-dimensional data $x_s \in \mathbb{R}^2$ can be modeled as: $x_s = \lambda_s z_s + \epsilon_s$ where $z_s \in \mathbb{R}^3$, $\lambda_s \in \mathbb{R}^{2\times 3}$. Sparseness is enforced by assuming a Laplacian prior for z_s :

$$p(z_s) = (2)^{-\frac{3}{2}} \prod_{l=1}^{3} \exp\left(\sqrt{2} |z_{sl}|\right)$$