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Challenge

Response of HUVEC to serum withdrawal, triggering
apoptosis
Timecourse with only a few measurements
Challenge is to identify candidate regulators
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A Gaussian State-Space Model with Feedback
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Output equation: yt = Cxt + Dyt−1 + vt
State dynamics equation: xt = Axt−1 + Byt−1 + wt

Key Concept: yt represents the measured gene expression
level at time step t and xt models the many unmeasured
(hidden) factors such as

genes that have not be included in the microarray,
levels of regulatory proteins,
the effects of mRNA and protein degradation, etc.
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Our Approach

Let θ = {A,B,C,D,R} be the parameters of the model (R
models noise covariance).
Elements of matrix [CB + D] represent all gene-gene
interactions
Exact Bayesian inference would give us p(θ|D), which tells
us confidence in each parameter and can be used to infer
model structure.
Unfortunately, exact inference is computationally
intractable.
We can use variational approximations to approximate
Bayesian inference in state-space models (Beal et al.,
2005).
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Parameter Distributions
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Model structure and overfitting:
a simple example
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Using Bayesian Occam’s Razor to Learn Model
Structure

Select the model class mi with the highest probability given the
data by computing the Marginal Likelihood (“evidence”):
Interpretation: The probability that randomly selected
parameters from the prior would generate the data set.

Model classes that are too simple are unlikely to generate
the data set.
Model classes that are too complex can generate many
possible data sets, so again, they are unlikely to generate
that particular data set at random.

too simple

too complex

"just right"

All possible data sets

P
(Y

|M
i)

Y

Adapted from David J.C. MacKay “Information Theory, Inference and Learning Algorithms”
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Bayesian Model Selection: Occam’s Razor at Work
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e.g. for quadratic (M=2): y = a0 + a1x + a2x2 + ε, where
ε ∼ N (0, τ) and θ2 = [a0 a1 a2 τ ]
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Variational Bayesian Approach

Variational free energy minimization is a method of
approximating a complex distribution p(x) by a simpler
distribution q(x; θ). We adust the parameters θ so as to get q to
best approximate p in some sense.
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Lower Bounding the Marginal Likelihood
We can also lower bound the marginal likelihood:
Using a simpler, factorised approximation to
q(x, θ) ≈ qx(x)qθ(θ):

ln p(y|m) = Fm(qx(x),qθ(θ),y).

Maximizing this lower bound, Fm, leads to EM-like iterative
updates. −Fm is a variational free energy
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Data Normalization
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Gene Selection - Method of Tai and Speed
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Model Selection
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Inferred Network - Top 50 Ranked Genes
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Inferred Network from Hirose et al. (2008)

Fig. 5. Summary of the gene expression analysis of HUVECs undergoing growth factor deprivation-induced apoptosis: (Upper left) Heatmap
representation of the estimated coefficient matrix %̂ which was divided into 8' 8 blocks corresponding to the eight transcriptional modules
identified. The genes in the i-th positive and negative modules were selected in the following way; the j-th gene was assigned to the i-th positive or the
i-th negative module if the (i, j)-th element of the estimated projection matrix (D)ij was ranked in the highest or lowest 20, respectively. (Upper right)
Gene network constructed under the acceptable level of significance 5% (right). The genes are classified and surrounded by the green-dashed lines
according to the attributed modules. Furthermore, the genes involved in the common function are also classified, e.g. dual specificity phosphatase,
G protein signalling-related genes, cell cycle. Directed edges with the positive or negative value are colored by red or blue. (Bottom) Gene expression
patterns of the transcriptional modules identified.

O.Hirose et al.
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Conclusions

VBSSM model produces plausible biological hypotheses
which can be experimentally validated
Candidate regulators predicted as major hubs in inferred
network
Contradictory but experimentally testable hypothesis to
Hirose et al. (2008)
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