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@ Response of HUVEC to serum withdrawal, triggering
apoptosis
@ Timecourse with only a few measurements

@ Challenge is to identify candidate regulators
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A Gaussian State-Space Model with Feedback

o4

Output equation: Yi = CX; + Dy;_1 + v
State dynamics equation: X; = AX;_1 + By;_1 + Wy

Key Concept: y; represents the measured gene expression
level at time step t and x; models the many unmeasured
(hidden) factors such as

@ genes that have not be included in the microarray,

@ levels of regulatory proteins,

@ the effects of mMRNA and protein degradation, etc.
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Motivation and Background

Our Approach

@ Letd = {A, B, C, D, R} be the parameters of the model (R
models noise covariance).

@ Elements of matrix [CB + D] represent all gene-gene
interactions

@ Exact Bayesian inference would give us p(6|D), which tells
us confidence in each parameter and can be used to infer
model structure.

@ Unfortunately, exact inference is computationally
intractable.

@ We can use variational approximations to approximate
Bayesian inference in state-space models (Beal et al.,
2005).
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Parameter Distributions
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Model structure and overfitting:

a simple example
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Using Bayesian Occam’s Razor to Learn Model

Structure
Select the model class m; with the highest probability given the
data by computing the Marginal Likelihood (“evidence”):
Interpretation: The probability that randomly selected
parameters from the prior would generate the data set.
@ Model classes that are too simple are unlikely to generate

the data set.
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Using Bayesian Occam’s Razor to Learn Model

Structure
Select the model class m; with the highest probability given the
data by computing the Marginal Likelihood (“evidence”):
Interpretation: The probability that randomly selected
parameters from the prior would generate the data set.
@ Model classes that are too simple are unlikely to generate
the data set.
@ Model classes that are too complex can generate many
possible data sets, so again, they are unlikely to generate

that particular datg set at random.

too simple

P(YIM;)

All possible data sets



Motivation and Background

Bayesian Model Selection: Occam’s Razor at Work
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e.g. for quadratic (M=2): y = ag + a1 x + axx® + ¢, where
e~N(0,7)and 6, = [ap a1 az 7]
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Variational Bayesian Approach

Variational free energy minimization is a method of
approximating a complex distribution p(x) by a simpler
distribution g(x; 8). We adust the parameters 6 so as to get g to
best approximate p in some sense.
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Lower Bounding the Marginal Likelihood

We can also lower bound the marginal likelihood:
Using a simpler, factorised approximation to

q(x, 0) ~ gx(x)qe(9):
Inp(ylm) = Fm(gx(x),qu(6),y).

Maximizing this lower bound, F,, leads to EM-like iterative
updates. —Fp, is a variational free energy

lower bound on marg argin inal likelihood / nats.
8
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Results

Gene Selection - Method of Tai and Speed

NM_002462 HoelingT2 = 4369.8 rank= 1

M
o s M s o s
Log2 v Losss
N_G21006 HotliogT2 07 rrk- 504

\ - R T -
N ~.
H 8
Yo, 3; 3 3.

H . .
§




Results

Model Selection
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Results

Inferred Network - Top 50 Ranked Genes




Results

Inferred Network from Hirose et al. (2008
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Conclusions

@ VBSSM model produces plausible biological hypotheses
which can be experimentally validated

@ Candidate reqgulators predicted as major hubs in inferred
network

@ Contradictory but experimentally testable hypothesis to
Hirose et al. (2008)
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