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Design Hierarchy
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Design Hierarchy
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Main Questions

» Do the measured intensities reflect the titration?
» Agreement across platforms.

» Influence of normalization.



Tests Against Order-Restricted Alternatives

v

Dose-response studies
70's and 80’s literature:

» Barlow [1]
> Robertson et al. [3]

v

v

Microarray Application: Lin et al. [2]
5 Statistics: Marcus, Wilson, E2, M, ModifiedM

E2 most powerful = we use E2

v

v



Test
Null Hypothesis

We test the null hypothesis of equal means

Hog : biLg = tm1g = iM2,g = HK g5
against the ordered alternatives
Hff; - HLg < HM1,g < HM2,g < HK.gs
down .
Hlfgwn - MLg > HM1,g > HM2,g > HK.gs

with at least one strict inequality.

» Main Principle: Isotonic Regression



Isotonic Regression

Fitting Monotone Functions

Isotonic Regression: Formulation

Isotonic Function  » Set 7 := {t1,..., t,} with order relation
» m(t;) is called isotonic if
t; < tj = m(t,-) < m(tj)
» F(T): all isotonic functions on 7
» Direction has to be specified
Isotonic Regression — » y; = m(t;) +¢€;, me F(T)
» Least-squares fit:
A= argmin e rery D1y (Vi — m(t;))>2.



Isotonic Regression

Example
» T={L<ML<M2<K}
> Vo (ti) = m"P(t;) + ¢
» Some gene expressions:
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Isotonic Regression
Upwards Trend
» T ={L<ML<M2<K}
> Vo (ti) = m"P(t;) + ¢
» Isotonic Regression for upwards trend:
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Isotonic Regression
Downwards Trend
» 7T ={L>M1>M2>K}
> yg(t,-) = mdown(t,') + €
» Isotonic Regression for downwards trend:
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Statistic
Definition of E2 Statistic

E2 (Barlow [1],Robertson et al. [3]):

—=2up > ki — mUP(t;))?

For =1 2 =¥ “

» Likelihood-ratio:



p-Value Combination
Capturing the Hierarchical Variance Structure

» Revisit the design hierarchy

» Now we add a new level: Normalization
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Normalizations

Baseline vs. Quantile Normalization

» Both widely used
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Normalizations

Baseline vs. Quantile Normalization

» Both widely used

Baseline Normalization
Align per array medians

1. From each array remove array-wise median
2. To each array add overall median

Removes systematic location shifts

Quantile Normalization
Align order statistics
1. Per array - reduce expressions to ranks

2. Per array - reassign ranks to quantiles from mean distribution
(means of order statistics)

Removes any systematic disturbance that keeps the order



p-Value Combination

Capturing the Hierarchical Variance Structure

» Revisit the design hierarchy
» We want p
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p-Value Combination

Inverse Normal Method

» Combine one-sided p-values:

PP 1oL Y o), )

i

C,down
> pg

» uniformly distritibuted conservative one-sided p-values

analogue

» Bonferroni correct directional decision:
Cc _ . C,up _C,down
pE = 2min(pS*?, pS %),



p-Value Combination
Per Animal p-Values

» 6 Animals x 3 Platforms x 2 Normalizations — 36 times
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p-Value Combination
Per Animal p-Values

> Combine the 6 X 6 Pre . prar ir Phioem Plat.ig tO g€t get 6:

CP/at7up CPIat,down

CP/at
pNorm,g > FNorm,g

) and pNorm,g
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p-Value Combination
Per Animal p-Values

. C'Dlat,up CP/at,down
» Combine the 3 PNorm,g » PNorm.g

CNorm7up CNO'm,dOWH
Pg y Pg

to get 2:
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p-Value Combination

Per Animal p-Values

» 6 Animals x 3 Platforms x 2 Normalizations — 36 times
up down i
pNorm,Plath’ PNorm,Plat,ig> PNorm,Plat,ig

H up down .
» Combine the 6 x 6 PNorm, Plat.ig> PNorm,Plat,ig 1O 8et get 6:
CPlat up cPlt down
pNorm,g > FNorm,g
. C'Dlat,up CP/at,down
» Combine the 3 PNorm,g » PNorm.g

CNorm7up CNO'm,dOWH
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p-Value Combination

Summary

» Comptute one sided permutation test p-values for each
animal, on each platform seperately with Quantile - and
Baseline - normalized data.

» Combine per animal tests from each plaform.

» Combine per platform tests from each normalization.



Results

Finally!



Exploratory Analysis

Distribution of Group Means on Raw Data
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Exploratory Analysis

Distribution of Group Means on Raw Data
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Exploratory Analysis

Distribution of Group Means on Raw Data

Affymetrix  Agilent lllumina
201 201 201
S R R RIEER 1Y » Location-shift

v

Higher messenger-RNA content in kidney?

il

wliil] » Both normalization methods remove any
visible trends in location
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Exploration of Trend

Relationship between Increases

» Relationship between
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Exploration of Trend

Relationship between Increases

» Relationship between
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Exploration of Trend

Relationship between Increases

» Relationship between
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Exploration of Trend

Relationship between Increases

Mean Expression
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Exploration of Trend

Relationship between Increases
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Exploration of Trend

Relationship between Increases

Affymetrix

Relationship between
first/second increase

Scatterplot - lllumina:
Trends not linear;
When first increase
large then last
increase small and
vice versa

» Scatterplot - Agilent

Scatterplot -
Affymetrix

» Rightmost point
» Lowest point

» Saturation?



Test Setup

Settings

R package IsoGene provided by Lin et al.

20000 permutations (1 week on Cluster)

2 Normalization Methods x 3 Platforms x 6 Animals
6111 well annotated genes available on all platforms

remove one animal from lllumina data

vV v v v v Y

Family Wise Error: Bonferoni-Holm



Proportions of Significant Genes

General Overview
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Proportions of Significant Genes

General Overview
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Agreement Between Platforms

Number of Genes

Al O
: O Baseline
Agil=lllu [ | .
Affy—lllu | | O Quantile
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» Fleiss’ k-coefficient - agreement across platforms using FWR
adjusted combined p-Vaues

» Quantile Normalisation: .52

» Baseline Normalisation: .37



Agreement Between Normalizations

Number of Genes significant

» around 2 times more
significant genes
exclusive to baseline
than to quantile
normalized data

» more than 97% of
genes exclusive to
711 baseline normalized
data are upregulated

Quantile  Baseline

3810 1070

» up-down in quantile
exclusive genes 40:60
Fleiss r-coefficient: .57
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» Substantial number of genes show significant monotonicity
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Summary

Results

Data

Substantial number of genes show significant monotonicity
Across platform agreement exceeds chance levels

Agreement on baseline normalized data is worse

vV v v Vv

Baseline noramlized data shows more upward trends -
incomplete removal of total/messenger-RNA effect

> Genes exclusively significant in baseline data are mostly
upward trends

Methods

> Isotonic regression as a means to detect monotonic trends

» p-Value combination as a means to compare results from
differnt platforms.



Thanks

» MSI - Martin Posch

» Statistic - Univie: Cluster
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Thank you for your attention
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