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Main Questions

I Do the measured intensities reflect the titration?

I Agreement across platforms.

I Influence of normalization.



Tests Against Order-Restricted Alternatives

I Dose-response studies
I 70’s and 80’s literature:

I Barlow [1]
I Robertson et al. [3]

I Microarray Application: Lin et al. [2]

I 5 Statistics: Marcus, Wilson, E2, M, ModifiedM

I E2 most powerful ⇒ we use E2



Test
Null Hypothesis

We test the null hypothesis of equal means

H0,g : µL,g = µM1,g = µM2,g = µK ,g , (1)

against the ordered alternatives

Hup
1,g : µL,g ≤ µM1,g ≤ µM2,g ≤ µK ,g , (2)

Hdown
1,g : µL,g ≥ µM1,g ≥ µM2,g ≥ µK ,g , (3)

with at least one strict inequality.

I Main Principle: Isotonic Regression



Isotonic Regression
Fitting Monotone Functions

Isotonic Regression: Formulation

Isotonic Function I Set T := {t1, ..., tn} with order relation
I m(ti ) is called isotonic if

ti ≤ tj ⇒ m(ti ) ≤ m(tj)
I F(T ): all isotonic functions on T
I Direction has to be specified

Isotonic Regression I yi = m(ti ) + εi , m ∈ F(T )
I Least-squares fit:

m̂ = argminm∈F(T )

∑n
i=1(yi −m(ti ))2.



Isotonic Regression
Example

I T = {L ≤ M1 ≤ M2 ≤ K}
I yg (ti ) = mup(ti ) + εi
I Some gene expressions:
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Isotonic Regression
Upwards Trend

I T = {L ≤ M1 ≤ M2 ≤ K}
I yg (ti ) = mup(ti ) + εi
I Isotonic Regression for upwards trend:
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Isotonic Regression
Downwards Trend

I T = {L ≥ M1 ≥ M2 ≥ K}
I yg (ti ) = mdown(ti ) + εi
I Isotonic Regression for downwards trend:
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Statistic
Definition of E2 Statistic

E2 (Barlow [1],Robertson et al. [3]):

E
2up
01 = 1−

∑
kj(ykj − m̂up(ti ))2∑

kj(ykj − y)2
, (4)

I Likelihood-ratio:

E
2up
01 = 1− ESS

TSS



p-Value Combination
Capturing the Hierarchical Variance Structure

I Revisit the design hierarchy
I Now we add a new level: Normalization
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Normalizations
Baseline vs. Quantile Normalization

I Both widely used

Baseline Normalization
Align per array medians

1. From each array remove array-wise median

2. To each array add overall median

Removes systematic location shifts

Quantile Normalization
Align order statistics

1. Per array - reduce expressions to ranks

2. Per array - reassign ranks to quantiles from mean distribution
(means of order statistics)

Removes any systematic disturbance that keeps the order
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p-Value Combination
Capturing the Hierarchical Variance Structure

I Revisit the design hierarchy
I We want p
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p-Value Combination
Inverse Normal Method

I Combine one-sided p-values:

pC ,up
g = 1− Φ(

1√
N

∑
i

Φ−1(1− pup
ig )), (5)

I pC ,down
g analogue

I uniformly distritibuted conservative one-sided p-values

I Bonferroni correct directional decision:
pC
g = 2min(pC ,up

g , pC ,down
g ).



p-Value Combination
Per Animal p-Values
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p-Value Combination
Summary

I Comptute one sided permutation test p-values for each
animal, on each platform seperately with Quantile - and
Baseline - normalized data.

I Combine per animal tests from each plaform.

I Combine per platform tests from each normalization.



Results

Finally!



Exploratory Analysis
Distribution of Group Means on Raw Data
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I Location-shift

I Higher messenger-RNA content in kidney?

I Both normalization methods remove any
visible trends in location

I Baseline

I Quantile - also in scale
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I Location-shift

I Higher messenger-RNA content in kidney?

I Both normalization methods remove any
visible trends in location

I Baseline

I Quantile - also in scale
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Test Setup

Settings

I R package IsoGene provided by Lin et al.

I 20000 permutations (1 week on Cluster)

I 2 Normalization Methods × 3 Platforms × 6 Animals

I 6111 well annotated genes available on all platforms

I remove one animal from Illumina data

I Family Wise Error: Bonferoni-Holm
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Agreement Between Platforms
Number of Genes
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I Fleiss’ κ-coefficient - agreement across platforms using FWR
adjusted combined p-Vaues

I Quantile Normalisation: .52

I Baseline Normalisation: .37



Agreement Between Normalizations
Number of Genes significant

Quantile Baseline

711

1070520 3810

Fleiss κ-coefficient: .57

I around 2 times more
significant genes
exclusive to baseline
than to quantile
normalized data

I more than 97% of
genes exclusive to
baseline normalized
data are upregulated

I up-down in quantile
exclusive genes 40:60



Summary
Results

Data
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I Genes exclusively significant in baseline data are mostly
upward trends

Methods

I Isotonic regression as a means to detect monotonic trends

I p-Value combination as a means to compare results from
differnt platforms.
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Thanks

I MSI - Martin Posch

I Statistic - Univie: Cluster
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